SOLPS-ITER simulations of high power exhaust for CFETR divertor with full drifts

被引:11
|
作者
Si, Hang [1 ]
Ding, Rui [1 ]
Senichenkov, Ilya [2 ]
Rozhansky, Vladimir [2 ]
Molchanov, Pavel [2 ]
Liu, Xiaoju [1 ]
Jia, Guozhang [1 ]
Sang, Chaofeng [3 ]
Mao, Shifeng [4 ]
Chan, Vincent [4 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[3] Dalian Univ Technol, Dalian 116024, Peoples R China
[4] Univ Sci & Technol China, Hefei 230026, Peoples R China
基金
俄罗斯基础研究基金会; 中国国家自然科学基金;
关键词
divertor; power handling; modeling; CFETR;
D O I
10.1088/1741-4326/ac3f4b
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One of the major challenges for the Gigawatt-class Chinese Fusion Engineering Testing Reactor (CFETR) is to efficiently handle huge power fluxes on plasma-facing components , especially the divertor targets. This work investigates the effects of two candidate radiation impurity species, argon (Ar) and neon (Ne), with two different divertor geometries (baseline and long leg divertor geometry) on the reduction of steady-state power load to divertor targets in CFETR by using the SOLPS-ITER code package with full drifts and kinetic description of neutrals. The modeling results show clearly that increasing the seeding rate of Ar or Ne with fixed fueling gas D-2 injection rate reduces the target electron temperature and heat flux density for the baseline divertor geometry, which can be reduced further by higher D-2 injection rate. With a high impurity seeding rate, partial detachment with steady-state power load at the divertor target below the engineering limit of 10 MW m(-2) is demonstrated. In addition, the radiation efficiency for Ar is better than that for Ne. Increasing the divertor leg length reduces the electron temperature and heat load at the targets. This modeling, therefore, suggests that a long leg divertor design with Ar seeding impurity is appropriate to meet the CFETR divertor requirements.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Evaluation of SPARC divertor conditions in H-mode operation using SOLPS-ITER
    Lore, Jeremy D.
    Park, Jae-Sun
    Eich, Thomas
    Kuang, Adam Q.
    Reinke, Matthew L.
    De Pascuale, Sebastian
    Lomanowski, Bart
    Creely, Alex
    Canik, John M.
    NUCLEAR FUSION, 2024, 64 (12)
  • [32] Full time-dependent SOLPS-ITER simulation of the SPARC tokamak: actuator design for particle and divertor condition control
    Park, Jae-Sun
    Lore, Jeremy D.
    Reinke, Matthew
    Kuang, Adam Q.
    De Pascuale, Sebastian
    Creely, Alex
    NUCLEAR FUSION, 2024, 64 (07)
  • [33] Tungsten divertor plasma simulation with bundled charge state model by SOLPS-ITER on EAST
    Gao, Shanlu
    Liu, Xiaoju
    Deng, Guozhong
    Ming, Tingfeng
    Li, Guoqiang
    Zhang, Xuexi
    Tao, Yuqiang
    Gao, Xiang
    AIP ADVANCES, 2021, 11 (02)
  • [34] Predictive modeling of a lithium vapor box divertor in NSTX-U using SOLPS-ITER
    Emdee, E. D.
    Goldston, R. J.
    Lore, J. D.
    Zhang, X.
    NUCLEAR MATERIALS AND ENERGY, 2021, 27
  • [35] Divertor geometry modeling with the SOLPS-ITER code for reactor concepts with liquid metal divertors br
    Islam, M. S.
    Lore, J. D.
    Smolentsev, S.
    Kessel, C. E.
    NUCLEAR MATERIALS AND ENERGY, 2022, 33
  • [36] Performance assessment of a tightly baffled, long-legged divertor configuration in TCV with SOLPS-ITER
    Sun, G.
    Reimerdes, H.
    Theiler, C.
    Duval, B. P.
    Carpita, M.
    Colandrea, C.
    Fevrier, O.
    NUCLEAR FUSION, 2023, 63 (09)
  • [37] Novel SOLPS-ITER simulations of X-point target and snowflake divertors
    Cowley, C.
    Kuang, A. Q.
    Moulton, D.
    Lore, J. D.
    Canik, J.
    Umansky, M.
    Wigram, M.
    Ballinger, S.
    Lipschultz, B.
    Bonnin, X.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (03)
  • [38] Simulations of Argon plasmas in the linear plasma device GyM with the SOLPS-ITER code
    Sala, M.
    Tonello, E.
    Uccello, A.
    Bonnin, X.
    Ricci, D.
    Dellasega, D.
    Granucci, G.
    Passoni, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (05)
  • [39] SOLPS-ITER simulations of an X-point radiator in the ASDEX Upgrade tokamak
    Pan, O.
    Bernert, M.
    Lunt, T.
    Cavedon, M.
    Kurzan, B.
    Wiesen, S.
    Wischmeier, M.
    Stroth, U.
    NUCLEAR FUSION, 2023, 63 (01)
  • [40] Comparison of high density and nitrogen seeded detachment using SOLPS-ITER simulations of the tokamak a configuration variable
    Smolders, A.
    Wensing, M.
    Carli, S.
    De Oliveira, H.
    Dekeyser, W.
    Duval, B. P.
    Fevrier, O.
    Gahle, D.
    Martinelli, L.
    Reimerdes, H.
    Theiler, C.
    Verhaegh, K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (12)