Quantum Integrals And The Affineness Criterion For Quantum Yetter-Drinfeld π-Modules

被引:0
|
作者
Chen Quan-guo [1 ,2 ]
Wang Shuan-hong [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Yili Normal Univ, Sch Math & Stat, Yining 835000, Peoples R China
关键词
Hopf pi-coalgebras; Quantum integrals; Quantum Yetter-Drinfeld pi-modules; HOPF GROUP-COALGEBRAS; GALOIS EXTENSIONS; ALGEBRAS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the quantum integrals associated to quantum Yetter-Drinfeld pi-modules are defined. We shall prove the following affineness criterion: if there exists theta = {theta(beta) : H-beta -> Hom(H beta-1, A)}(beta is an element of pi), a total quantum integral and the canonical map chi : A circle times(B) A -> circle plus(gamma is an element of pi) H-gamma circle times A, chi(a circle times(B) b) = circle plus(gamma is an element of pi) S-gamma(-1) phi(alpha)(b([1,alpha-1 gamma-1 alpha]))b([0,0]<-1,gamma >) circle times ab([0,0]< 0,0 >) is surjective. Then the induction functor - circle times(B) A : u(B) ->(H) yD(Lambda)(alpha) is an equivalence of categories. The affineness criterion proven by Menini and Militaru is recovered as special cases.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 50 条
  • [31] Relative Yetter-Drinfeld modules and comodules over braided groups
    Zhu, Haixing
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [32] Yetter-Drinfeld π-modules over weak T-coalgebras
    Jia, Ling
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (03): : 375 - 396
  • [33] Functors for Long dimodules and Yetter-Drinfeld modules in a weak setting
    Alvarez, Jose Nicanor Alonso
    Rodriguez, Ramon Gonzalez
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2023, 150 : 247 - 266
  • [34] THE AFFINENESS CRITERION FOR WEAK YETTER-DRINFEL'D MODULES
    Guo, Shuangjian
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2014, 15 : 41 - 55
  • [35] On Doi-Hopf modules and Yetter-Drinfeld modules in symmetric monoidal categories
    Bulacu, Daniel
    Torrecillas, Blas
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (01) : 89 - 115
  • [36] CATEGORICAL DUALITY FOR YETTER-DRINFELD ALGEBRAS
    Neshveyev, Sergey
    Yamashita, Makoto
    DOCUMENTA MATHEMATICA, 2014, 19 : 1105 - 1139
  • [37] Yetter-Drinfeld modules over bosonizations of dually paired Hopf algebras
    Heckenberger, I.
    Schneider, H. -J.
    ADVANCES IN MATHEMATICS, 2013, 244 : 354 - 394
  • [38] Doi-Hopf modules and Yetter-Drinfeld modules for quasi-Hopf algebras
    Bulacu, D.
    Caenepeel, S.
    Torrecillas, B.
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (09) : 3413 - 3449
  • [39] More properties of Yetter-Drinfeld modules over Quasi-Hopf algebras
    Bulacu, D
    Caenepeel, S
    Panaite, F
    HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 89 - 112
  • [40] Determinants and symmetries in 'Yetter-Drinfeld' categories
    Appl Categorical Struct, 2 (267-289):