Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation

被引:62
|
作者
Li, Hong [1 ]
Li, Jing [1 ]
Fan, Xiaolei [2 ]
Li, Xingang [1 ]
Gao, Xin [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Natl Engn Res Ctr Distillat Technol, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[2] Univ Manchester, Sch Chem Engn & Analyt Sci, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
中国国家自然科学基金;
关键词
Microwave; Co-pyrolysis; Synergetic effect; Oil sands; Biomass; ASSISTED PYROLYSIS; RICE STRAW; MICROALGAE; PLASTICS; LIGNITE; CHAR; WOOD; DISTRIBUTIONS; GASIFICATION; PARAMETERS;
D O I
10.1016/j.fuel.2018.10.139
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Microwave-assisted co-pyrolysis of oil sands and biomass (sawdust) was carried out for the first time to investigate the synergistic effect under microwave irradiation. In the co-pyrolysis process, the pyrolysis residues of sawdust serve as the effective microwave absorber to enable the improved thermal decomposition of oil sands compared with the case by the conventional thermal treatment. Effects of co-pyrolysis temperature, blending ratio, and feedstock-to-microwave absorber ratio on the product distribution were examined. Compared with conventional (CV) co-pyrolysis, a synergetic effect, in terms of 10.9 wt % higher gas yield and 8.3 wt % lower liquid yield, was manifested during microwave (MW) co-pyrolysis. Biomass added to the feedstock promoted the generation of compounds with molecular weight > 800 Da in the liquid products. MW radiation promoted 24.5 % higher aromatic hydrocarbons on average, but 19.2 % fewer phenols in MW-generated oils, which are more desirable as value-added chemicals. Furthermore, chars produced by MW performed more porotic, contributing to positive recycling as absorbing materials. The thermochemical conversion of biomass with oil sand revealed that MW heating is a simple, effective, and alternative solution to increase the energy efficiency of co-pyrolysis process, maximizing the use of resources.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [21] Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review
    Liu, Junjian
    Hou, Qidong
    Ju, Meiting
    Ji, Peng
    Sun, Qingmei
    Li, Weizun
    CATALYSTS, 2020, 10 (07) : 1 - 26
  • [22] Co-pyrolysis of beeswax with different consumer plastics for synergetic production of sustainable fuel oil
    Sabat, Gayatri
    Gouda, Narayan
    Mahapatra, Pabitra Mohan
    Mahakhud, Rutuparna
    Panda, Achyut K.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [23] Co-pyrolysis of Pingshuo coal and biomass
    Wang, Jian
    Zhang, Shou-Yu
    Guo, Xi
    Dong, Ai-Xia
    Chen, Chuan
    Xiong, Shao-Wu
    Fang, Yi-Tian
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2013, 41 (01): : 67 - 73
  • [24] Co-pyrolysis of Biomass and Pingshuo Coal
    Wang, Jian
    Zhang, Shouyu
    Dong, Aixia
    Guo, Xi
    Chen, Chuan
    Xiong, Shaowu
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 694 - 697
  • [25] Study on synergistic effect of biomass and FCC slurry co-pyrolysis
    Hao, Zeguang
    Zhang, Qian
    Gao, Zenglin
    Zhang, Hongwen
    Peng, Zeyu
    Yang, Kai
    Liang, Litong
    Huang, Wei
    Huagong Xuebao/CIESC Journal, 2022, 73 (09): : 4070 - 4078
  • [26] Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis
    Krutof, A.
    Hawboldt, K. A.
    BIOMASS CONVERSION AND BIOREFINERY, 2018, 8 (03) : 775 - 787
  • [27] Co-Pyrolysis Synergistic Effect of HSW Coal and Biomass in Ningdong
    Fan, Hui
    Ren, Qian
    Feng, Caiyun
    Li, Ping
    Guo, Qingjie
    Ma, Qingxiang
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35 (05): : 981 - 987
  • [28] Synergistic effect during biomass and waste plastics co-pyrolysis
    生物质和废塑料混合热解协同特性研究
    Yang, Hai-Ping (yhping2002@163.com), 2020, Science Press (48): : 286 - 292
  • [29] Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis
    A. Krutof
    K. A. Hawboldt
    Biomass Conversion and Biorefinery, 2018, 8 : 775 - 787
  • [30] Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: Thermochemical behaviors, kinetics and evolved gas analysis
    Ozsin, Gamzenur
    Putun, Ayse Eren
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 675 - 685