On the complexity of dualization of monotone disjunctive normal forms

被引:266
|
作者
Fredman, ML
Khachiyan, L
机构
[1] Department of Computer Science, Rutgers University, New Brunswick
基金
美国国家科学基金会;
关键词
D O I
10.1006/jagm.1996.0062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the duality of a pair of monotone disjunctive normal forms of size n can be tested in n(O(log n)) time. (C) 1996 Academic Press, Inc.
引用
收藏
页码:618 / 628
页数:11
相关论文
共 50 条
  • [21] THE SYNTHESIS OF DISJUNCTIVE NORMAL FORMS CLOSE TO MINIMUM ONES
    ANDREEV, AE
    [J]. DOKLADY AKADEMII NAUK SSSR, 1983, 269 (01): : 11 - 15
  • [22] Shortest and minimal disjunctive normal forms of complete functions
    Yu. V. Maximov
    [J]. Computational Mathematics and Mathematical Physics, 2015, 55 : 1242 - 1255
  • [23] METHOD FOR MINIMIZING THE DISJUNCTIVE NORMAL FORMS OF BOOLEAN FUNCTIONS
    Peskov, R. N.
    Shchennikov, V. N.
    [J]. MORDOVIA UNIVERSITY BULLETIN, 2010, 4 : 26 - 29
  • [24] ALGORITHMS FOR SIMPLIFFICATION OF DISJUNCTIVE NORMAL FORMS OF FINITE INDEX
    ZHURAVLEV, Y
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 139 (06): : 1329 - &
  • [25] Duality and pseudo duality of dual disjunctive normal forms
    Zhang, Xingfang
    [J]. KNOWLEDGE-BASED SYSTEMS, 2011, 24 (07) : 1033 - 1036
  • [26] FINITE PREDICATES INVERTING IN THE CLASS OF DISJUNCTIVE NORMAL FORMS
    NOVIKOV, JA
    [J]. AVTOMATIKA I VYCHISLITELNAYA TEKHNIKA, 1991, (06): : 68 - 74
  • [27] Dualization of generalized equations of maximal monotone type
    Pennanen, T
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) : 809 - 835
  • [28] Computational aspects of monotone dualization: A brief survey
    Eiter, Thomas
    Makino, Kazuhisa
    Gottlob, Georg
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (11) : 2035 - 2049
  • [29] Synthesis of Optimal Correction Functions in the Class of Disjunctive Normal Forms
    Kabulov, Anvar
    Baizhumanov, Abdussattar
    Saymanov, Islambek
    [J]. MATHEMATICS, 2024, 12 (13)
  • [30] MINIMIZATION OF DISJUNCTIVE NORMAL FORMS OF FUZZY-LOGIC FUNCTIONS
    BHAT, KVS
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1981, 311 (03): : 171 - 185