Scaffolds Based Bone Tissue Engineering: The Role of Chitosan

被引:242
|
作者
Costa-Pinto, Ana Rita [1 ,2 ]
Reis, Rui L. [1 ,2 ]
Neves, Nuno M. [1 ,2 ]
机构
[1] Univ Minho, Res Grp Biomat Biodegradables & Biomimet 3Bs, Dept Polymer Engn, Headquarters European Inst Excellence Tissue Engn, P-4806909 Caldas Das Taipas, Guimaraes, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, Braga, Portugal
关键词
MARROW STROMAL CELLS; MESENCHYMAL STEM-CELLS; FIBER-MESH SCAFFOLDS; BIPHASIC CALCIUM-PHOSPHATE; N-ACETYLATED CHITOSANS; CRITICAL-SIZE DEFECTS; IN-VITRO DEGRADATION; GROWTH-FACTOR; OSTEOGENIC DIFFERENTIATION; COMPOSITE SCAFFOLDS;
D O I
10.1089/ten.teb.2010.0704
中图分类号
Q813 [细胞工程];
学科分类号
摘要
As life expectancy increases, malfunction or loss of tissue caused by injury or disease leads to reduced quality of life in many patients at significant socioeconomic cost. Even though major progress has been made in the field of bone tissue engineering, present therapies, such as bone grafts, still have limitations. Current research on biodegradable polymers is emerging, combining these structures with osteogenic cells, as an alternative to autologous bone grafts. Different types of biodegradable materials have been proposed for the preparation of three-dimensional porous scaffolds for bone tissue engineering. Among them, natural polymers are one of the most attractive options, mainly due to their similarities with extracellular matrix, chemical versatility, good biological performance, and inherent cellular interactions. In this review, special attention is given to chitosan as a biomaterial for bone tissue engineering applications. An extensive literature survey was performed on the preparation of chitosan scaffolds and their in vitro biological performance as well as their potential to facilitate in vivo bone regeneration. The present review also aims to offer the reader a general overview of all components needed to engineer new bone tissue. It gives a brief background on bone biology, followed by an explanation of all components in bone tissue engineering, as well as describing different tissue engineering strategies. Moreover, also discussed are the typical models used to evaluate in vitro functionality of a tissue-engineered construct and in vivo models to assess the potential to regenerate bone tissue are discussed.
引用
收藏
页码:331 / 347
页数:17
相关论文
共 50 条
  • [31] Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Ryu, BoMi
    Sudha, P. N.
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 50 (02) : 393 - 402
  • [32] Hydrothermal fabrication of hydroxyapatite/chitosan/carbon porous scaffolds for bone tissue engineering
    Long, Teng
    Liu, Yu-Tai
    Tang, Sha
    Sun, Jin-Liang
    Guo, Ya-Ping
    Zhu, Zhen-An
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2014, 102 (08) : 1740 - 1748
  • [33] Bio-hybrid scaffolds for bone tissue engineering: Nanohydroxyapatite/chitosan composites
    Palazzo, Barbara
    Izzo, D.
    Scalera, F.
    Cancelli, A.N.
    Gervaso, F.
    Key Engineering Materials, 2015, 631 : 300 - 305
  • [34] Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering
    Sainitya, R.
    Sriram, M.
    Kayanaraman, V.
    Dhivya, S.
    Saravanan, S.
    Vairamani, M.
    Sastry, T. P.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 80 : 481 - 488
  • [35] Preparation and characterization of novel chitosan/zeolite scaffolds for bone tissue engineering applications
    Akmammedov, Rovshen
    Huysal, Merve
    Isik, Sevim
    Senel, Mehmet
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2018, 67 (02) : 110 - 118
  • [36] Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering
    Maharjan, Bikendra
    Park, Jeesoo
    Kaliannagounder, Vignesh Krishnamoorthi
    Awasthi, Ganesh Prasad
    Joshi, Mahesh Kumar
    Park, Chan Hee
    Kim, Cheol Sang
    CARBOHYDRATE POLYMERS, 2021, 251 (251)
  • [37] An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering
    Deepthi, S.
    Venkatesan, J.
    Kim, Se-Kwon
    Bumgardner, Joel D.
    Jayakumar, R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 1338 - 1353
  • [38] Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering
    Lei, Yong
    Xu, Zhengliang
    Ke, Qinfei
    Yin, Wenjing
    Chen, Yixuan
    Zhang, Changqing
    Guo, Yaping
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 : 134 - 142
  • [39] Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering
    Saravanan, S.
    Sameera, D. K.
    Moorthi, A.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 62 : 481 - 486
  • [40] Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering
    Kara, Aylin
    Tamburaci, Sedef
    Tihminlioglu, Funda
    Havitcioglu, Hasan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 130 : 266 - 279