Semantics, knowledge, and grids at the age of big data and AI

被引:0
|
作者
Hai Zhuge [1 ,2 ,3 ]
Sun, Xiaoping [2 ]
机构
[1] Guangzhou Univ, Lab Cyber Phys Social Intelligence, Guangzhou, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Aston Univ, Syst Analyt Res Inst, Birmingham, W Midlands, England
来源
基金
中国国家自然科学基金;
关键词
PROVENANCE;
D O I
10.1002/cpe.5066
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The rapid development of data science and artificial intelligence provides new methods and tools for exploring semantics, knowledge, and grids-the evolving interconnection environment. Different streams of research including Internet of Things, cloud computing, edge-computing, semantics modeling, and cyber-physical society are converging to support an intelligent interconnection environment. It is an important issue to create the method for ensuring the sustainable development of this interconnection environment. Big data and machine learning provide an empirical model for resolving this issue that is different from the method based on semantics and knowledge.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Semantics in the Age of the Data Deluge
    Vetere, G.
    INFORMATION SYSTEMS: PEOPLE, ORGANIZATIONS, INSTITUTIONS, AND TECHNOLOGIES, 2010, : 415 - 421
  • [32] Big Data and Knowledge
    Palmirani, Monica
    RIVISTA DI FILOSOFIA DEL DIRITTO-JOURNAL OF LEGAL PHILOSOPHY, 2020, 9 (01): : 73 - 91
  • [33] From Big Data to Big Knowledge
    Murphy, Kevin
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1917 - 1917
  • [34] 2024 Nursing Knowledge Big Data Science Conference Exploring AI and Innovation in Nursing
    Ivory, Catherine H.
    Johnson, Steven
    Freeman, Rebecca
    Delaney, Connie W.
    CIN-COMPUTERS INFORMATICS NURSING, 2024, 42 (09) : 626 - 628
  • [35] Using Semantics in Predictive Big Data Analytics
    Nural, Mustafa V.
    Cotterell, Michael E.
    Miller, John A.
    2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015, 2015, : 254 - 261
  • [36] Semantics in the Deep: Semantic Analytics for Big Data
    Koutsomitropoulos, Dimitrios
    Likothanassis, Spiridon
    Kalnis, Panos
    DATA, 2019, 4 (02)
  • [37] Semantics, intelligent processing and services for big data
    Xhafa, Fatos
    Barolli, Leonard
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 37 : 201 - 202
  • [38] Big Data Issues in Smart Grids: A Survey
    Ghorbanian, Maedeh
    Dolatabadi, Sarineh Hacopian
    Siano, Pierluigi
    IEEE SYSTEMS JOURNAL, 2019, 13 (04): : 4158 - 4168
  • [39] Global Reference Grids for Big Earth Data
    Gibb, Robert G.
    Purss, Matthew B. J.
    Sabeur, Zoheir
    Strobl, Peter
    Qu, Tengteng
    BIG EARTH DATA, 2022, 6 (03) : 251 - 255
  • [40] Big data analytics in smart grids: a review
    Zhang Y.
    Huang T.
    Bompard E.F.
    Energy Informatics, 1 (1)