Broadband Transient THz Conductivity of the Transition-Metal Dichalcogenide MoS2

被引:4
|
作者
Buss, J. H. [1 ]
Smith, R. P. [1 ]
Coslovich, G. [1 ]
Kaindl, R. A. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
关键词
ultrafast dynamics; THz spectroscopy; electron-hole pairs; many-particle interactions; non-equilibrium charge transport; transition-metal dichalcogenides; molybdenum disulfide; MoS2; INSULATOR-TRANSITION;
D O I
10.1117/12.2080748
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The transient dynamics of transition-metal dichalcogenides is of significant interest for clarifying fundamental many-particle interactions at the nanoscale as well as for novel applications. We report an ultrafast terahertz study up to 7 THz of the lamellar semiconductor MoS2 to access the non-equilibrium conductivity of photo-excited indirect e-h pairs in this multi-layered parent compound. While the equilibrium transport is Drude-like, near-IR optical excitation results in a complex photo-induced conductivity that consists of two components. Mobile charge carriers dominate the low frequency response below 2 THz, while at low temperatures an additional excess conductivity is observed that is enhanced around 4 THz. Two time scales appear in the dynamics: a slow ns relaxation due to non-radiative recombination and a faster sub-100 ps decay connected to the high-frequency THz feature. We discuss the broad THz peak within a model of intra-excitonic transitions in MoS2. It agrees well with the expected binding energy and oscillator strength, yet results in an anomalous temperature dependence of the exciton fraction requiring an electronically inhomogeneous phase.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Surface phases of the transition-metal dichalcogenide IrTe2
    Chen, Chen
    Kim, Jisun
    Yang, Yifan
    Cao, Guixin
    Jin, Rongying
    Plummer, E. W.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [22] Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS2 and MoSe2 Heterostructure
    Zhang, Jingchao
    Hong, Yang
    Wang, Xinyu
    Yue, Yanan
    Xie, Danmei
    Jiang, Jin
    Xiong, Yangheng
    Li, Peisheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (19): : 10336 - 10344
  • [23] Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam: Insights from First-Principles Calculations
    Kretschmer, Silvan
    Komsa, Hannu-Pekka
    Boggild, Peter
    Krasheninnikov, Arkady V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (13): : 3061 - 3067
  • [24] Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain
    Zhou, Yungang
    Su, Qiulei
    Wang, Zhiguo
    Deng, Huiqiu
    Zu, Xiaotao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (42) : 18464 - 18470
  • [25] Enhanced Magnetic Anisotropies of Single Transition-Metal Adatoms on a Defective MoS2 Monolayer
    Cong, W. T.
    Tang, Z.
    Zhao, X. G.
    Chu, J. H.
    SCIENTIFIC REPORTS, 2015, 5
  • [26] Enhanced Magnetic Anisotropies of Single Transition-Metal Adatoms on a Defective MoS2 Monolayer
    W. T. Cong
    Z. Tang
    X. G. Zhao
    J. H. Chu
    Scientific Reports, 5
  • [27] First-principles study of transition-metal atoms adsorption on MoS2 monolayer
    Wang, Yanzong
    Wang, Baolin
    Huang, Rui
    Gao, Benling
    Kong, Fanjie
    Zhang, Qinfang
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 63 : 276 - 282
  • [28] Photocurrent generation in a metallic transition-metal dichalcogenide
    Mehmood, Naveed
    Rasouli, Hamid Reza
    Cakiroglu, Onur
    Kasirga, T. Serkan
    PHYSICAL REVIEW B, 2018, 97 (19)
  • [29] Identification of electronic descriptors for catalytic activity of transition-metal and non-metal doped MoS2
    Xie, Zijuan
    Huang, Xiang
    Zhang, Zhe
    Xu, Hu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (28) : 15101 - 15106
  • [30] Sorting Transition-Metal Dichalcogenide Nanotubes by Centrifugation
    Yomogida, Yohei
    Liu, Zheng
    Ichinose, Yota
    Yanagi, Kazuhiro
    ACS OMEGA, 2018, 3 (08): : 8932 - 8936