A conjecture concerning the pure exponential diophantine equation ax + by = cz

被引:9
|
作者
Le, MH [1 ]
机构
[1] Zhanjiang Normal Coll, Dept Math, Zhanjiang 524005, Peoples R China
基金
中国国家自然科学基金;
关键词
pure exponential diophantine equation; number of solutions; completely determine;
D O I
10.1007/s10114-004-0436-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b, c, r be fixed positive integers such that a(2) + b(2) = c(r), min(a, b, c, r) > 1 and 2 inverted iota r. In this paper we prove that if a equivalent to 2 (mod 4), b equivalent to 3 (mod 4), c > 3. 10(37) and r > 7200, then the equation a(x) + b(y) = c(z) only has the solution (x, y, z) = (2, 2, r).
引用
收藏
页码:943 / 948
页数:6
相关论文
共 50 条
  • [21] DIOPHANTINE EQUATION AX4+BY4+CZ4=O
    MORDELL, LJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 68 : 125 - &
  • [22] The linear diophantine equation ax+by+cz=e IN Q(root 5)
    Altindis, H
    Atasoy, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (09): : 837 - 841
  • [23] The ternary exponential Diophantine equation concerning Pythagorean triplets
    Han Di
    Zhang Wenpeng
    QUAESTIONES MATHEMATICAE, 2015, 38 (04) : 483 - 494
  • [24] On the Diophantine Equation ax
    Pakapongpun, Apisit
    Chattae, Bunthita
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (02): : 711 - 716
  • [25] On the Diophantine Equation ax
    Dokchan, Rakporn
    Panngam, Nopparat
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2025, 20 (01): : 63 - 66
  • [26] On the Diophantine equation ax
    Viriyapong, Chokchai
    Viriyapong, Nongluk
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (03): : 525 - 527
  • [27] On the Diophantine equation ax
    Viriyapong, Chokchai
    Viriyapong, Nongluk
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (02): : 449 - 451
  • [28] EXPONENTIAL DIOPHANTINE EQUATION 1+A+A2+...+AX-1-PY
    EDGAR, HM
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (07): : 758 - 759
  • [29] A study on the exponential Diophantine equation ax + (a plus b)y = bz
    Miyazaki, Takafumi
    Terai, Nobuhiro
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (1-2): : 19 - 37
  • [30] ON CONDITIONS OF DISCRETENESS AND THE DIOPHANTINE EQUATION AX2+BY2+CZ2=DXYZ
    KERNISBERNER, G
    ROSENBERGER, G
    ARCHIV DER MATHEMATIK, 1980, 34 (06) : 481 - 493