A conjecture concerning the pure exponential diophantine equation ax + by = cz

被引:9
|
作者
Le, MH [1 ]
机构
[1] Zhanjiang Normal Coll, Dept Math, Zhanjiang 524005, Peoples R China
基金
中国国家自然科学基金;
关键词
pure exponential diophantine equation; number of solutions; completely determine;
D O I
10.1007/s10114-004-0436-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b, c, r be fixed positive integers such that a(2) + b(2) = c(r), min(a, b, c, r) > 1 and 2 inverted iota r. In this paper we prove that if a equivalent to 2 (mod 4), b equivalent to 3 (mod 4), c > 3. 10(37) and r > 7200, then the equation a(x) + b(y) = c(z) only has the solution (x, y, z) = (2, 2, r).
引用
收藏
页码:943 / 948
页数:6
相关论文
共 50 条