Evaluation of Linux I/O Schedulers for Big Data Workloads

被引:0
|
作者
Rezgui, Abdelmounaam [1 ]
White, Matthew [1 ]
Rezgui, Sami [2 ]
Malik, Zaki [3 ]
机构
[1] New Mexico Inst Min & Technol, Dept Comp Sci & Engn, Socorro, NM USA
[2] Univ Alger III, Algiers, Algeria
[3] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA
关键词
Big data; Linux I/O schedulers;
D O I
10.1109/BDCloud.2014.74
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Big data is receiving more and more attention as an increasingly large number of institutions turn to big data processing for business insights and customer personalization. Most of the research in big data has focused on how to distribute a given workload over a set of computing nodes to achieve good performance. The operating system at each node uses an I/O scheduling algorithm to retrieve disk blocks and load them into main memory. Achieving good performance in big data applications is therefore inherently dependent on the efficiency of the I/O scheduler used in the OS of the nodes. In this paper, we evaluate the impact of different Linux I/O schedulers on a number of big data workloads. The objective of the study is to determine whether specific schedulers (or specific configurations of those schedulers) are superior to others in terms of supporting big data workloads.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 50 条
  • [1] Utilizing NVDIMM to alleviate the I/O Performance Gap for Big Data Workloads
    Shao, Zili
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2017,
  • [2] Utilizing NVDIMM to alleviate the I/O Performance Gap for Big Data Workloads
    Shao, Zili
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATION (VLSI-TSA), 2017,
  • [3] MREv: an Automatic MapReduce Evaluation Tool for Big Data Workloads
    Veiga, Jorge
    Exposito, Roberto R.
    Taboada, Guillermo L.
    Tourino, Juan
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 80 - 89
  • [4] Bridging the I/O Performance Gap for Big Data Workloads: A New NVDIMM-based Approach
    Chen, Renhai
    Shao, Zili
    Li, Tao
    [J]. 2016 49TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2016,
  • [5] Characterizing and Subsetting Big Data Workloads
    Jia, Zhen
    Zhan, Jianfeng
    Wang, Lei
    Han, Rui
    McKee, Sally A.
    Yang, Qiang
    Luo, Chunjie
    Li, Jingwei
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC), 2014, : 191 - 201
  • [6] A study of hotspot data prediction model in I/O workloads
    Yang, Yin
    Tan, Zhihu
    Xie, Changsheng
    Liang, Wei
    Yu, Jie
    He, Jian
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (03) : 403 - 433
  • [7] Comparative Evaluation of Big-Data Systems on Scientific Image Analytics Workloads
    Mehta, Parmita
    Dorkenwald, Sven
    Zhao, Dongfang
    Kaftan, Tomer
    Cheung, Alvin
    Balazinska, Magdalena
    Rokem, Ariel
    Connolly, Andrew
    Vanderplas, Jacob
    AlSayyad, Yusra
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (11): : 1226 - 1237
  • [8] Fairness and Interactive Performance of O(1) and CFS Linux Kernel Schedulers
    Wong, C. S.
    Tan, I. K. T.
    Kumari, R. D.
    Lam, J. W.
    Fun, W.
    [J]. INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS: COGNITIVE INFORMATICS: BRIDGING NATURAL AND ARTIFICIAL KNOWLEDGE, 2008, : 2318 - +
  • [9] Understanding system design for Big Data workloads
    Hofstee, H. Peter
    Chen, Guan Cheng
    Gebara, Fadi H.
    Hall, Kevin
    Herring, Jay
    Jamsek, Damir
    Li, Jian
    Li, Yan
    Shi, Ju Wei
    Wong, Peter Wai Yee
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2013, 57 (3-4)
  • [10] Automotive Big Data: Applications, Workloads and Infrastructures
    Luckow, Andre
    Kennedy, Ken
    Manhardt, Fabian
    Djerekarov, Emil
    Vorster, Bennie
    Apon, Amy
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1201 - 1210