Utilizing NVDIMM to alleviate the I/O Performance Gap for Big Data Workloads

被引:0
|
作者
Shao, Zili [1 ]
机构
[1] Hong Kong Polytech Univ, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Utilizing NVDIMM to alleviate the I/O Performance Gap for Big Data Workloads
    Shao, Zili
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2017,
  • [2] Bridging the I/O Performance Gap for Big Data Workloads: A New NVDIMM-based Approach
    Chen, Renhai
    Shao, Zili
    Li, Tao
    [J]. 2016 49TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2016,
  • [3] Evaluation of Linux I/O Schedulers for Big Data Workloads
    Rezgui, Abdelmounaam
    White, Matthew
    Rezgui, Sami
    Malik, Zaki
    [J]. 2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 227 - 234
  • [4] Towards Efficient NVDIMM-based Heterogeneous Storage Hierarchy Management for Big Data Workloads
    Chen, Renhai
    Shao, Zili
    Liu, Duo
    Feng, Zhiyong
    Li, Tao
    [J]. MICRO'52: THE 52ND ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2019, : 849 - 860
  • [5] Compressive Sensing on Storage Data: An Effective Solution to Alleviate I/O Bottleneck in Data-Intensive Workloads
    Makrani, Hosein Mohammadi
    Sayadi, Hossein
    Manoj, Sai P. D.
    Raftirad, Setareh
    Homayoun, Houman
    [J]. 2018 IEEE 29TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP), 2018, : 211 - 218
  • [6] Performance Analysis of Network I/O Workloads in Virtualized Data Centers
    Mei, Yiduo
    Liu, Ling
    Pu, Xing
    Sivathanu, Sankaran
    Dong, Xiaoshe
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2013, 6 (01) : 48 - 63
  • [7] Performance Characterization and Acceleration of Big Data Workloads on OpenPOWER System
    Lu, Xiaoyi
    Shi, Haiyang
    Shankar, Dipti
    Panda, Dhabaleswar K.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 213 - 222
  • [8] On the Impact of Virtualization on the I/O Performance of Analytic Workloads
    Ha, Son-Hai
    Venzano, Daniele
    Brown, Patrick
    Michiardi, Pietro
    [J]. 2016 2ND INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2016, : 31 - 38
  • [9] Improving I/O Performance with Adaptive Data Compression for Big Data Applications
    Zou, Hongbo
    Yu, Yongen
    Tang, Wei
    Chen, Hsuanwei Michelle
    [J]. PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 1229 - 1238
  • [10] Quantifying the Performance Impact of Memory Latency and Bandwidth for Big Data Workloads
    Clapp, Russell
    Dimitrov, Martin
    Kumar, Karthik
    Viswanathan, Vish
    Willhalm, Thomas
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC), 2015, : 213 - 224