Hyperspectral Image Mixed Denoising Using Difference Continuity-Regularized Nonlocal Tensor Subspace Low-Rank Learning

被引:13
|
作者
Sun, Le [1 ,2 ]
He, Chengxun [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol NUIST, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] NUIST, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensors; Noise reduction; Approximation algorithms; Hyperspectral imaging; Sun; Image restoration; Optimization; Difference-continuity; hyperspectral mixed denoising; nonlocal tensor approximation; subspace low-rank learning;
D O I
10.1109/LGRS.2021.3090178
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid advancement of spectrometers, the imaging range of the electromagnetic spectrum starts growing narrower. The reduction of electromagnetic wave energy received in a single wavelength range leads more complex noise into the generated hyperspectral image (HSI), thus causing a severe cripple in the accuracy of subsequent applications. The requirement for the HSI mixed denoising algorithm's accuracy is further lifted. To address this challenge, in this letter, we propose a novel difference continuity-regularized nonlocal tensor subspace low-rank learning (named DNTSLR) method for HSI mixed denoising. Technically, the original high-dimensional HSI data was first projected into a low-dimensional subspace spanned by a spectral difference continuous basis instead of an orthogonal basis, so the data continuity of the restored HSI spectrum and tensor low-rankness was guaranteed. Then, a cube matching strategy was employed to stack the nonlocal tensor patches from the projected coefficient tensor, and a shrinkage algorithm was used to approximate the low-rank coefficient tensor. Eventually, the subspace low-rank learning algorithm was designed to alternately separate the noise tensor and restore the latent clean low-rank HSI tensor. Extensive experiments on multiple open datasets validate that the proposed method realizes the state-of-the-art denoising accuracy for HSI.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] LOW-RANK REGULARIZED JOINT SPARSITY FOR IMAGE DENOISING
    Zha, Zhiyuan
    Wen, Bihan
    Yuan, Xin
    Zhou, Jiantao
    Zhu, Ce
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1644 - 1648
  • [42] LOW-RANK REGULARIZED COLLABORATIVE FILTERING FOR IMAGE DENOISING
    Nejati, Mansour
    Samavi, Shadrokh
    Soroushmehr, S. M. Reza
    Najarian, Kayvan
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 730 - 734
  • [43] Hyperspectral Image Restoration Using Low-Rank Tensor Recovery
    Fan, Haiyan
    Chen, Yunjin
    Guo, Yulan
    Zhang, Hongyan
    Kuang, Gangyao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4589 - 4604
  • [44] WEIGHTED GROUP SPARSITY REGULARIZED LOW-RANK TENSOR DECOMPOSITION FOR HYPERSPECTRAL IMAGE RESTORATION
    Chen, Yong
    He, Wei
    Yokoya, Naoto
    Huang, Ting-Zhu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 234 - 237
  • [45] Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition
    Wang, Yao
    Peng, Jiangjun
    Zhao, Qian
    Leung, Yee
    Zhao, Xi-Le
    Meng, Deyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (04) : 1227 - 1243
  • [46] Hyperspectral Image Restoration Using Weighted Group Sparsity-Regularized Low-Rank Tensor Decomposition
    Chen, Yong
    He, Wei
    Yokoya, Naoto
    Huang, Ting-Zhu
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3556 - 3570
  • [47] Nonlocal Means Regularized Sketched Reweighted Sparse and Low-Rank Subspace Clustering for Large Hyperspectral Images
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4164 - 4178
  • [48] Content-Aware Subspace Low-Rank Tensor Recovery for Hyperspectral Image Restoration
    Xiao, Xueyao
    Zhang, Wei
    Chang, Yi
    Cao, Shuning
    He, Wei
    Fang, Houzhang
    Yan, Luxin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Iterative Low-Rank Network for Hyperspectral Image Denoising
    Ye, Jin
    Xiong, Fengchao
    Zhou, Jun
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [50] Tensor low-rank sparse representation for tensor subspace learning
    Du, Shiqiang
    Shi, Yuqing
    Shan, Guangrong
    Wang, Weilan
    Ma, Yide
    NEUROCOMPUTING, 2021, 440 : 351 - 364