Research on Autonomous Decision-Making of UCAV Based on Deep Reinforcement Learning

被引:2
|
作者
Wang, Linxiang [1 ]
Wei, Hongtao [1 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan, Peoples R China
关键词
virtual reality; deep reinforcement learning; combat simulation; UCAV;
D O I
10.1109/ICTC55111.2022.9778652
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the intelligence level of training opponents in UCAV air combat simulation and the realism and immersion of air combat simulation in 3D space, this paper proposes a deep reinforcement learning algorithm for UCAV autonomous control based on virtual reality technology. A combination of reinforcement learning and Unity3D is used to train UCAV agents to achieve air combat tasks in 3D virtual reality space, and imitation learning is added to improve the efficiency of policy generation. Multiple perceptrons are used to simplify the agent's acquisition of environmental state data, and reward functions are designed by integrating UCAV angle, speed, and altitude considerations to visualize the entire 3D visualization process of reinforcement learning training UCAV agents to interact with the environment.
引用
下载
收藏
页码:122 / 126
页数:5
相关论文
共 50 条
  • [21] Research on Decision-Making in Emotional Agent Based on Reinforcement Learning
    Feng Chao
    Chen Lin
    Jiang Kui
    Wei Zhonglin
    Zhai Bing
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 1191 - 1194
  • [22] Deep Reinforcement Learning Based Decision-Making Strategy of Autonomous Vehicle in Highway Uncertain Driving Environments
    Deng, Huifan
    Zhao, Youqun
    Wang, Qiuwei
    Nguyen, Anh-Tu
    AUTOMOTIVE INNOVATION, 2023, 6 (03) : 438 - 452
  • [23] Intelligent decision-making system for multiple marine autonomous surface ships based on deep reinforcement learning
    Guan, Wei
    Luo, Wenzhe
    Cui, Zhewen
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 172
  • [24] A Safe and Efficient Lane Change Decision-Making Strategy of Autonomous Driving Based on Deep Reinforcement Learning
    Lv, Kexuan
    Pei, Xiaofei
    Chen, Ci
    Xu, Jie
    MATHEMATICS, 2022, 10 (09)
  • [25] Deep Reinforcement Learning Based Decision-Making Strategy of Autonomous Vehicle in Highway Uncertain Driving Environments
    Huifan Deng
    Youqun Zhao
    Qiuwei Wang
    Anh-Tu Nguyen
    Automotive Innovation, 2023, 6 : 438 - 452
  • [26] Autonomous guidance maneuver control and decision-making algorithm based on deep reinforcement learning UAV route
    Zhang K.
    Li K.
    Shi H.
    Zhang Z.
    Liu Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (07): : 1567 - 1574
  • [27] A Deep Reinforcement Learning Decision-Making Approach for Adaptive Cruise Control in Autonomous Vehicles
    Ghraizi, Dany
    Talj, Reine
    Francis, Clovis
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 71 - 78
  • [28] Knowledge-Embedded Deep Reinforcement Learning for Autonomous Network Decision-Making Algorithm
    Zhang, Yalin
    Gao, Hui
    Su, Xin
    Liu, Bei
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [29] Decision-making with Triple Density Awareness for Autonomous Driving using Deep Reinforcement Learning
    Zhang, Shuwei
    Wu, Yutian
    Ogai, Harutoshi
    Tateno, Shigeyuki
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [30] Multi-intent autonomous decision-making for air combat with deep reinforcement learning
    Luyu Jia
    Chengtao Cai
    Xingmei Wang
    Zhengkun Ding
    Junzheng Xu
    Kejun Wu
    Jiaqi Liu
    Applied Intelligence, 2023, 53 : 29076 - 29093