Network Anomaly Detection Using Header Information With Greedy Algorithm

被引:1
|
作者
Ates, Cagatay [1 ]
Ozdel, Suleyman [1 ]
Yildirim, Metehan [1 ]
Anarim, Emin [1 ]
机构
[1] Bogazici Univ, Elekt Elekt Muhendisligi Bolumu, Istanbul, Turkey
关键词
Entropy; greedy; divergence; anomaly detection; intrusion detection; DDoS; SVM;
D O I
10.1109/siu.2019.8806451
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Network anomaly detection is an important and rapidly growing area. In this paper, we propose a new network anomaly detection method based on the probability distributions of header information. The distances between the distributions of headers are calculated to reflect the main characteristics of the network. These are calculated using Greedy algorithm which eliminates some requirements associated with Kullback-Leibler divergence such as having the same rank of the probability distributions. Then, Support Vector Machine classifier is used in the detection phase to reduce false alarm rates and to make the system adaptive for different networks. This algorithm is tested on the real data collected from Bogazici University network and MIT Darpa 2000 dataset.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Network anomaly detection using nonextensive entropy
    Ziviani, Artur
    Gomes, Antonio Tadeu A.
    Monsores, Marcelo L.
    Rodrigues, Paulo S. S.
    IEEE COMMUNICATIONS LETTERS, 2007, 11 (12) : 1034 - 1036
  • [42] Network anomaly detection using neural networks
    Globa, L. S.
    Demidova, Y. A.
    Ternovoy, M. Y.
    2006 16TH INTERNATIONAL CRIMEAN CONFERENCE MICROWAVE & TELECOMMUNICATION TECHNOLOGY, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 412 - +
  • [43] USING R FOR ANOMALY DETECTION IN NETWORK TRAFFIC
    Hock, Denis
    Kappes, Martin
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INTERNET TECHNOLOGIES AND APPLICATIONS (ITA 13), 2013, : 98 - 105
  • [44] Network Anomaly Detection using Soft Computing
    Srinoy, Surat
    Kurutach, Werasak
    Chimphlee, Witcha
    Chimphlee, Siriporn
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 9, 2005, 9 : 140 - 144
  • [45] Network Anomaly Detection Using Federated Learning
    Marfo, William
    Tosh, Deepak K.
    Moore, Shirley V.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [46] Network Anomaly Detection Using Parameterized Entropy
    Berezinski, Przemyslaw
    Szpyrka, Marcin
    Jasiul, Bartosz
    Mazur, Michal
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2014, 2014, 8838 : 465 - 478
  • [47] Adversarial Algorithm Unrolling Network for Interpretable Mechanical Anomaly Detection
    An, Botao
    Wang, Shibin
    Qin, Fuhua
    Zhao, Zhibin
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6007 - 6020
  • [48] A Network Anomaly Detection Algorithm based on Natural Neighborhood Graph
    Liu, Renyu
    Zhu, Qingsheng
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [49] A design of a parallel network anomaly detection algorithm based on classification
    Ashok Kumar D.
    Venugopalan S.R.
    International Journal of Information Technology, 2022, 14 (4) : 2079 - 2092
  • [50] Combining Wavelet Analysis and CUSUM Algorithm for Network Anomaly Detection
    Callegari, Christian
    Giordano, Stefano
    Pagano, Michele
    Pepe, Teresa
    2012 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2012,