Anomalous video event detection using spatiotemporal context

被引:144
|
作者
Jiang, Fan [1 ]
Yuan, Junsong [3 ]
Tsaftaris, Sotirios A. [1 ,2 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Video surveillance; Anomaly detection; Data mining; Clustering; Context; CLASSIFICATION; RECOGNITION; PATTERNS; SYSTEM; MODELS;
D O I
10.1016/j.cviu.2010.10.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared to other anomalous video event detection approaches that analyze object trajectories only, we propose a context-aware method to detect anomalies. By tracking all moving objects in the video, three different levels of spatiotemporal contexts are considered, i.e., point anomaly of a video object, sequential anomaly of an object trajectory, and co-occurrence anomaly of multiple video objects. A hierarchical data mining approach is proposed. At each level, frequency-based analysis is performed to automatically discover regular rules of normal events. Events deviating from these rules are identified as anomalies. The proposed method is computationally efficient and can infer complex rules. Experiments on real traffic video validate that the detected video anomalies are hazardous or illegal according to traffic regulations. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 50 条
  • [31] Rare event detection in a spatiotemporal environment
    Meng, Yu
    Dunham, Margaret H.
    Marchetti, F. Marco
    Huang, Jie
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, : 629 - +
  • [32] Auroral event detection using spatiotemporal statistics of local motion vectors
    WANG Qian
    LIANG Jimin
    HU Zejun
    [J]. Advances in Polar Science, 2013, 24 (03) : 175 - 182
  • [33] Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition
    Ahsan, Unaiza
    Madhok, Rishi
    Essa, Irfan
    [J]. 2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 179 - 189
  • [34] Dual-Channel Autoencoder with Key Region Feature Enhancement for Video Anomalous Event Detection
    Ye, Qing
    Song, Zihan
    Zhao, Yuqi
    Zhang, Yongmei
    [J]. NEURAL PROCESSING LETTERS, 2024, 56 (03)
  • [35] Anomalous Event Detection in Traffic Video Based on Sequential Temporal Patterns of Spatial Interval Events
    Kumar, Ashok P. M.
    Vaidehi, V.
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2015, 9 (01): : 169 - 189
  • [36] A spatiotemporal model for video saliency detection
    Kalboussi, Rahma
    Abdellaoui, Mehrez
    Douik, Ali
    [J]. 2016 SECOND INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2016,
  • [37] Anomalous cluster detection in spatiotemporal meteorological fields
    Ramachandra, Bharathkumar
    Dutton, Benjamin
    Vatsavai, Ranga Raju
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (02) : 88 - 100
  • [38] Abrupt Scene Change Detection Using Spatiotemporal Regularity of Video Cube
    Kumar, Rupesh
    Ray, Sonali
    Sharma, Meenakshi
    Kumar, Basant
    [J]. ADVANCES IN VLSI, COMMUNICATION, AND SIGNAL PROCESSING, 2020, 587 : 991 - 1002
  • [39] A Video Salient Region Detection Framework Using Spatiotemporal Consistency Optimization
    Zheng, Yunfei
    Zhang, Xiongwei
    Bao, Lei
    Cao, Tieyong
    Hu, Yonggang
    Sun, Meng
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (02): : 688 - 701
  • [40] Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection
    Alshawi, Tariq
    Long, Zhiling
    AlRegib, Ghassan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2818 - 2827