Anomalous video event detection using spatiotemporal context

被引:144
|
作者
Jiang, Fan [1 ]
Yuan, Junsong [3 ]
Tsaftaris, Sotirios A. [1 ,2 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Video surveillance; Anomaly detection; Data mining; Clustering; Context; CLASSIFICATION; RECOGNITION; PATTERNS; SYSTEM; MODELS;
D O I
10.1016/j.cviu.2010.10.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared to other anomalous video event detection approaches that analyze object trajectories only, we propose a context-aware method to detect anomalies. By tracking all moving objects in the video, three different levels of spatiotemporal contexts are considered, i.e., point anomaly of a video object, sequential anomaly of an object trajectory, and co-occurrence anomaly of multiple video objects. A hierarchical data mining approach is proposed. At each level, frequency-based analysis is performed to automatically discover regular rules of normal events. Events deviating from these rules are identified as anomalies. The proposed method is computationally efficient and can infer complex rules. Experiments on real traffic video validate that the detected video anomalies are hazardous or illegal according to traffic regulations. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 50 条
  • [1] VIDEO ANOMALY DETECTION IN SPATIOTEMPORAL CONTEXT
    Jiang, Fan
    Yuan, Junsong
    Tsaftaris, Sotirios A.
    Katsaggelos, Aggelos K.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 705 - 708
  • [2] Video Event Detection as Matching of Spatiotemporal Projection
    Park, Dong-Jun
    Eichmann, David
    [J]. ADVANCES IN VISUAL COMPUTING, PT III, 2010, 6455 : 139 - 150
  • [3] Intelligent Video Monitoring for Anomalous Event Detection
    Conde, Ivan Gomez
    Cecchi, David Olivieri
    Sobrino, Xose Anton Vila
    Rodriguez, Angel Orosa
    [J]. AMBIENT INTELLIGENCE: SOFTWARE AND APPLICATIONS, 2011, 92 : 101 - 108
  • [4] Smart Telecare Video Monitoring for Anomalous Event Detection
    Gomez-Conde, I.
    Olivieri, D. N.
    Vila, X. A.
    Rodriguez-Linares, L.
    [J]. SISTEMAS Y TECNOLOGIAS DE INFORMACION, 2010, : 384 - 389
  • [5] Spatio-temporal context analysis within video volumes for anomalous-event detection and localization
    Li, Nannan
    Wu, Xinyu
    Xu, Dan
    Guo, Huiwen
    Feng, Wei
    [J]. NEUROCOMPUTING, 2015, 155 : 309 - 319
  • [6] A Distributed Framework for Event Detection in Video Surveillance Context
    Persia, Fabio
    D'Auria, Daniela
    [J]. 2015 10TH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC), 2015, : 578 - 583
  • [7] Context and Quality Estimation in Video For Enhanced Event Detection
    Irvine, John M.
    Wood, Richard J.
    [J]. AIRBORNE INTELLIGENCE, SURVEILLANCE, RECONNAISSANCE (ISR) SYSTEMS AND APPLICATIONS XII, 2015, 9460
  • [8] Context Modeling and Reasoning for Video Abnormal Event Detection
    Sun, Che
    Wu, Yu-Wei
    Jia, Yun-De
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (10): : 2368 - 2386
  • [9] Video Event Detection: From Subvolume Localization to Spatiotemporal Path Search
    Du Tran
    Yuan, Junsong
    Forsyth, David
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (02) : 404 - 416
  • [10] Video Saliency Detection Using Spatiotemporal Cues
    Chen, Yu
    Xiao, Jing
    Hu, Liuyi
    Chen, Dan
    Wang, Zhongyuan
    Li, Dengshi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (09): : 2201 - 2208