4D Light Field Segmentation with Spatial and Angular Consistencies

被引:0
|
作者
Mihara, Hajime [1 ]
Funatomi, Takuya [1 ]
Tanaka, Kenichiro [1 ,2 ]
Kubo, Hiroyuki [1 ]
Nagahara, Hajime [3 ]
Mukaigawa, Yasuhiro [1 ]
机构
[1] Nara Inst Sci & Technol, Ikoma, Nara, Japan
[2] Osaka Univ, Suita, Osaka 565, Japan
[3] Kyushu Univ, Fukuoka 812, Japan
关键词
ENERGY MINIMIZATION; ALGORITHMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we describe a supervised four-dimensional (4D) light field segmentation method that uses a graph-cut algorithm. Since 4D light field data has implicit depth information and contains redundancy, it differs from simple 4D hyper-volume. In order to preserve redundancy, we define two neighboring ray types (spatial and angular) in light field data. To obtain higher segmentation accuracy, we also design a learning-based likelihood, called objectness, which utilizes appearance and disparity cues. We show the effectiveness of our method via numerical evaluation and some light field editing applications using both synthetic and real-world light fields.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 50 条
  • [31] Hyperpixels: Flexible 4D Over-Segmentation for Dense and Sparse Light Fields
    Hamad, Maryam Faleh
    Conti, Caroline
    Nunes, Paulo
    Soares, Luis Ducla
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3790 - 3805
  • [32] 3D Scene Flow from 4D Light Field Gradients
    Ma, Sizhuo
    Smith, Brandon M.
    Gupta, Mohit
    [J]. COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 681 - 698
  • [33] 4D VESSEL SEGMENTATION AND TRACKING IN ULTRASOUND
    Patwardhan, Kedar A.
    Yu, Yongjian
    Gupta, Sandeep
    Dentinger, Aaron
    Mills, David
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2317 - 2320
  • [34] 4D-Former: Multimodal 4D Panoptic Segmentation
    Athar, Ali
    Li, Enxu
    Casas, Sergio
    Urtasun, Raquel
    [J]. CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [35] 4D deformable models with temporal constraints: application to 4D cardiac image segmentation
    Montagnat, J
    Delingette, H
    [J]. MEDICAL IMAGE ANALYSIS, 2005, 9 (01) : 87 - 100
  • [36] Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model
    Cordero-Grande, L.
    Vegas-Sanchez-Ferrero, G.
    Casaseca-de-la-Higuera, P.
    Alberto San-Roman-Calvar, J.
    Revilla-Orodea, Ana
    Martin-Fernandez, M.
    Alberola-Lopez, C.
    [J]. MEDICAL IMAGE ANALYSIS, 2011, 15 (03) : 283 - 301
  • [37] Quantifying Spatial and Angular Resolution of Light-Field 3-D Displays
    Kovacs, Peter Tamas
    Bregovic, Robert
    Boev, Atanas
    Barsi, Attila
    Gotchev, Atanas
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (07) : 1213 - 1222
  • [38] Spatial-angular-epipolar transformer for light field spatial and angular super-resolution
    Wang, Sizhe
    Sheng, Hao
    Chen, Rongshan
    Yang, Da
    Cui, Zhenglong
    Cong, Ruixuan
    Xiong, Zhang
    [J]. DISPLAYS, 2024, 85
  • [39] FLEXIBLE SPATIAL AND ANGULAR LIGHT FIELD SUPER RESOLUTION
    Ma, Dizhi
    Lumsdaine, Andrew
    Zhou, Wenhui
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2970 - 2974
  • [40] LFGAN: 4D Light Field Synthesis from a Single RGB Image
    Chen, Bin
    Ruan, Lingyan
    Lam, Miu-Ling
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (01)