Reconstruction-based Contribution for Process Monitoring with Kernel Principal Component Analysis

被引:0
|
作者
Alcala, Carlos F. [1 ]
Qin, S. Joe [1 ]
机构
[1] Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
关键词
FAULT-DETECTION; BATCH PROCESSES; IDENTIFICATION; DIAGNOSIS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new method for fault diagnosis based on kernel principal component analysis (KPCA). The proposed method uses reconstruction-based contributions (RBC) to diagnose simple and complex faults in nonlinear principal component models based on KPCA. Similar to linear PCA, a combined index, based on the weighted combination of the Hotelling's T(2) and SPE indices, is proposed. Control limits for these fault detection indices are proposed using second order moment approximation. The proposed fault detection and diagnosis scheme is tested with a simulated CSTR process where simple and complex faults are introduced. The simulation results show that the proposed fault detection and diagnosis methods are efective for KPCA.
引用
收藏
页码:7022 / 7027
页数:6
相关论文
共 50 条
  • [31] Anomaly detection based on kernel principal component and principal component analysis
    Wang, Wei
    Zhang, Min
    Wang, Dan
    Jiang, Yu
    Li, Yuliang
    Wu, Hongda
    Lecture Notes in Electrical Engineering, 2019, 463 : 2222 - 2228
  • [32] Process monitoring based on probabilistic principal component analysis for drilling process
    Fan, Haipeng
    Wu, Min
    Lai, Xuzhi
    Du, Sheng
    Lu, Chengda
    Chen, Luefeng
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [33] Fault detection and diagnosis of multiphase batch process based on kernel principal component analysis-principal component analysis
    Qi, Yong-Sheng
    Wang, Pu
    Gao, Xue-Jin
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2012, 29 (06): : 754 - 764
  • [34] Sparse Kernel Principal Component Analysis via Sequential Approach for Nonlinear Process Monitoring
    Guo, Lingling
    Wu, Ping
    Gao, Jinfeng
    Lou, Siwei
    IEEE ACCESS, 2019, 7 : 47550 - 47563
  • [35] Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring
    Ben Khediri, Issam
    Limam, Mohamed
    Weihs, Claus
    COMPUTERS & INDUSTRIAL ENGINEERING, 2011, 61 (03) : 437 - 446
  • [36] Uncertain Nonlinear Process Monitoring Using Interval Ensemble Kernel Principal Component Analysis
    Wang, Xianrui
    Zhao, Guoxin
    Liu, Yu
    Yang, Shujie
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2021, 25 (01) : 101 - 109
  • [37] Reconstruction-based contribution analysis for sensor fault diagnostics
    Ye, Hao
    Xu, Haipeng
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2012, 52 (01): : 36 - 39
  • [38] Quality-Related Process Monitoring Based on Improved Kernel Principal Component Regression
    Qi, Li
    Yi, Xiaoyun
    Yao, Lina
    Fang, Yixian
    Ren, Yuwei
    IEEE ACCESS, 2021, 9 : 132733 - 132745
  • [39] Process monitoring based on wavelet packet principal component analysis
    Li, XX
    Qian, Y
    Wang, JF
    EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING - 13, 2003, 14 : 455 - 460
  • [40] Subspace-based gearbox condition monitoring by kernel principal component analysis
    He, Qingbo
    Kong, Fanrang
    Yan, Ruqiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (04) : 1755 - 1772