Flow compactifications of nondiscrete monoids, idempotents and Hindman's theorem

被引:0
|
作者
Ball, RN [1 ]
Hagler, JN [1 ]
机构
[1] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
flow; Stone-Cech compactification; Hindman's theorem;
D O I
10.1023/A:1026231202849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman's Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
引用
收藏
页码:319 / 342
页数:24
相关论文
共 50 条
  • [31] New Bounds on the Strength of Some Restrictions of Hindman's Theorem
    Carlucci, Lorenzo
    Kolodziejczyk, Leszek Aleksander
    Lepore, Francesco
    Zdanowski, Konrad
    UNVEILING DYNAMICS AND COMPLEXITY, CIE 2017, 2017, 10307 : 210 - 220
  • [32] HINDMAN'S THEOREM: AN ULTRAFILTER ARGUMENT IN SECOND ORDER ARITHMETIC
    Towsner, Henry
    JOURNAL OF SYMBOLIC LOGIC, 2011, 76 (01) : 353 - 360
  • [33] Lagrange's Theorem for Hopf Monoids in Species
    Aguiar, Marcelo
    Lauve, Aaron
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (02): : 241 - 265
  • [34] "WEAK YET STRONG" RESTRICTIONS OF HINDMAN'S FINITE SUMS THEOREM
    Carlucci, Lorenzo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 819 - 829
  • [35] The reverse mathematics of Hindman's Theorem for sums of exactly two elements
    Csima, Barbara F.
    Dzhafarov, Damir D.
    Hirschfeldt, Denis R.
    Jockusch, Carl G., Jr.
    Solomon, Reed
    Westrick, Linda Brown
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2019, 8 (3-4): : 253 - 263
  • [36] A RECURSIVE COLORING FUNCTION WITHOUT Π03 SOLUTIONS FOR HINDMAN'S THEOREM
    Liao, Yuke
    JOURNAL OF SYMBOLIC LOGIC, 2024,
  • [37] Tarski monoids: Matui’s spatial realization theorem
    Mark V. Lawson
    Semigroup Forum, 2017, 95 : 379 - 404
  • [38] Tarski monoids: Matui's spatial realization theorem
    Lawson, Mark V.
    SEMIGROUP FORUM, 2017, 95 (02) : 379 - 404
  • [39] Amitsur's theorem, semicentral idempotents, and additively idempotent semirings
    Rachev, Martin
    Trendafilov, Ivan
    OPEN MATHEMATICS, 2024, 22 (01):
  • [40] A Lyndon's identity theorem for one-relator monoids
    Gray, Robert D.
    Steinberg, Benjamin
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (03):