The m-Extension of Fibonacci and Lucas p-Difference Sequences

被引:2
|
作者
Kome, Cahit [1 ]
Yazlik, Yasin [1 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Dept Math, TR-50300 Nevsehir, Turkey
关键词
The m-extension of Fibonacci p-difference sequence; The m-extension of Lucas p-difference sequence; Generating function; Newton interpolation;
D O I
10.2298/FIL1919187K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define the m-extension of Fibonacci and Lucas p-difference sequences by using the m-extension of Fibonacci and Lucas p-numbers. We investigate some properties of our new sequences and introduce some relations between the m-extension of Fibonacci and Lucas p-difference sequences and the m-extension of Fibonacci and Lucas p-numbers. Moreover, we present the sums and generating function of the m-extension of Fibonacci and Lucas p-difference sequences. Finally, we study the m-extension of Fibonacci p-difference Newton polynomial interpolation.
引用
收藏
页码:6187 / 6194
页数:8
相关论文
共 50 条
  • [21] Coding theory on h(x) extension of m sequences for Fibonacci numbers
    Prasad, Bandhu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (02)
  • [22] New Identities for Generalized Fibonacci Sequences and New Generalization of Lucas Sequences
    Yayenie, Omer
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (05) : 739 - 752
  • [23] The Sequences of Fibonacci and Lucas for Real Quadratic Number Fields
    Lam-Estrada, Pablo
    Maldonado-Ramirez, Myriam Rosalia
    Lopez-Bonilla, Jose Luis
    Zarate, Fausto Jarquin
    Rajendra, R.
    Reddy, P. Siva Kota
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [24] Integer sequences that behave as Fibonacci-Lucas pairs
    Di Domenico, A.
    MATHEMATICAL GAZETTE, 2013, 97 (538): : 1 - 7
  • [25] DEDEKIND SUMS AND SOME GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Dilcher, Karl
    Meyer, Jeffrey L.
    FIBONACCI QUARTERLY, 2010, 48 (03): : 260 - 264
  • [26] Some Golden Ratio generalized Fibonacci and Lucas sequences
    Leyendekkers, J. V.
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 33 - 41
  • [27] ON THE K(TH) DERIVATIVE SEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS
    WANG, J
    FIBONACCI QUARTERLY, 1995, 33 (02): : 174 - 178
  • [28] STRONG M-EXTENSION PROPERTY AND M-AMALGAMATION IN BOOLEAN ALGEBRAS
    MACZYNSKI, MJ
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (04): : 259 - +
  • [29] The k-Fibonacci difference sequences
    Falcon, Sergio
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 153 - 157
  • [30] Incomplete Fibonacci and Lucas p-numbers
    TasciA, Dursun
    Firengiz, Mirac Cetin
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1763 - 1770