Optimal designs for estimating individual coefficients in polynomial regression with no intercept

被引:2
|
作者
Dette, Holger [1 ]
Melas, Viatcheslav B. [2 ]
Shpilev, Petr [2 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] St Petersburg State Univ, Math & Mech Fac, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Polynomial regression; c-optimal design; Chebyshev system; MODELS;
D O I
10.1016/j.spl.2019.108636
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We identify optimal designs for estimating individual coefficients in a polynomial regression with no intercept. Here the regression functions do not form a Chebyshev system such that the seminal results of Studden (1968) characterizing c-optimal designs are not applicable. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条