Propagation Connectivity of Random Hypergraphs

被引:0
|
作者
Coja-Oghlan, Amin [1 ]
Onsjoe, Mikael [2 ]
Watanabe, Osamu [2 ]
机构
[1] Univ Warwick, Math & Comp Sci, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[2] Tokyo Inst Technol, Dept Comp Sci & Math, Ookayama, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the concept of propagation connectivity on random 3-uniform hypergraphs. This concept is defined for investigating the performance of a simple algorithm for solving instances of certain constraint satisfaction problems. We derive upper and lower bounds for edge probability of random 3-uniform hypergraphs such that the propagation connectivity holds. Based on our analysis, we also show the way to implement the simple algorithm so that it runs in linear time on average.
引用
收藏
页码:490 / +
页数:2
相关论文
共 50 条
  • [41] Discrepancy of random graphs and hypergraphs
    Ma, Jie
    Naves, Humberto
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (01) : 147 - 162
  • [42] Dividing and forking in random hypergraphs
    Kikyo, Hirotaka
    Tsuboi, Akito
    ANNALS OF PURE AND APPLIED LOGIC, 2025, 176 (02)
  • [43] Structure of large random hypergraphs
    Darling, RWR
    Norris, JR
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A): : 125 - 152
  • [44] Geometric Representations of Random Hypergraphs
    Lunagomez, Simon
    Mukherjee, Sayan
    Wolpert, Robert L.
    Airoldi, Edoardo M.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 363 - 383
  • [45] On the Chromatic Numbers of Random Hypergraphs
    Yu. A. Demidovich
    D. A. Shabanov
    Doklady Mathematics, 2020, 102 : 380 - 383
  • [46] JIGSAW PERCOLATION ON RANDOM HYPERGRAPHS
    Bollobas, Bela
    Cooley, Oliver
    Kang, Mihyun
    Koch, Christoph
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (04) : 1261 - 1277
  • [47] Fractional colourings of random hypergraphs
    Zakharov, P. A.
    Shabanov, D. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 1161 - 1163
  • [48] Spontaneous recovery in random hypergraphs
    Peng, Hao
    Kuang, Zhihao
    Zhao, Dandan
    Zhang, Bo
    Qian, Cheng
    Zhong, Ming
    Han, Jianmin
    Wang, Wei
    CHAOS, 2024, 34 (07)
  • [49] Monotone paths in random hypergraphs
    Majer, P.
    Novaga, M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [50] CYCLES IN RANDOM GRAPHS AND HYPERGRAPHS
    KOLCHIN, VF
    ADVANCES IN APPLIED PROBABILITY, 1992, 24 (04) : 768 - 768