Propagation Connectivity of Random Hypergraphs

被引:0
|
作者
Coja-Oghlan, Amin [1 ]
Onsjoe, Mikael [2 ]
Watanabe, Osamu [2 ]
机构
[1] Univ Warwick, Math & Comp Sci, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
[2] Tokyo Inst Technol, Dept Comp Sci & Math, Ookayama, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the concept of propagation connectivity on random 3-uniform hypergraphs. This concept is defined for investigating the performance of a simple algorithm for solving instances of certain constraint satisfaction problems. We derive upper and lower bounds for edge probability of random 3-uniform hypergraphs such that the propagation connectivity holds. Based on our analysis, we also show the way to implement the simple algorithm so that it runs in linear time on average.
引用
收藏
页码:490 / +
页数:2
相关论文
共 50 条
  • [1] Propagation Connectivity of Random Hypergraphs
    Coja-Oghlan, Amin
    Onsjoe, Mikael
    Watanabe, Osamu
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [2] Propagation Connectivity of Random Hypergraphs
    Berke, Robert
    Onsjoe, Mikael
    STOCHASTIC ALGORITHMS: FOUNDATIONS AND APPLICATIONS, PROCEEDINGS, 2009, 5792 : 117 - 126
  • [3] Random Horn Formulas and Propagation Connectivity for Directed Hypergraphs
    Sloan, Robert H.
    Stasi, Despina
    Turan, Gyoergy
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02): : 29 - 35
  • [4] Connectivity of Random Geometric Hypergraphs
    de Kergorlay, Henry-Louis
    Higham, Desmond J.
    ENTROPY, 2023, 25 (11)
  • [5] On the connectivity of proper colorings of random graphs and hypergraphs
    Anastos, Michael
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (04) : 988 - 997
  • [6] Connectivity of random hypergraphs with a given hyperedge size distribution
    Bergman, Elmer
    Leskelae, Lasse
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 1 - 13
  • [7] Connectivity in Hypergraphs
    Dewar, Megan
    Pike, David
    Proos, John
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (02): : 252 - 271
  • [8] The geometry connectivity of hypergraphs
    Deng, Chunli
    Sun, Lizhu
    Bu, Changjiang
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [9] Random hypergraphs
    Karonski, M
    Luczak, T
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 283 - 293
  • [10] Edge-connectivity in hypergraphs
    Shuang Zhao
    Dan Li
    Jixiang Meng
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 837 - 846