Computing ε-free NFA from regular expressions in .O(nlog2(n)) time

被引:30
|
作者
Hagenah, C [1 ]
Muscholl, A [1 ]
机构
[1] Univ Stuttgart, Inst Informat, D-70565 Stuttgart, Germany
关键词
epsilon-free-nondeterministic automata; regular expressions; common follow sets construction;
D O I
10.1051/ita:2000116
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The standard procedure to transform a regular expression of size n to an epsilon -free nondeterministic finite automaton yields automata with O(n) states and O(n(2)) transitions. For a long time this was supposed to be also the lower bound, but a result by Hromkovic et al. showed how to build an epsilon -free NFA with only O(n log(2)(n)) transitions. The current lower bound on the number of transitions is Omega (n log(n)). A rough running time estimation for the common follow sets (CFS) construction proposed by Hromkovic et al. yields a cubic algorithm. In this paper we present a sequential algorithm for the CFS construction which works in time O(n log(n)+ size of the output). On a CREW PRAM the CFS construction can be performed in time O(log(n)) using O(n + (size of the output)/ log(n)) processors. We also present a simpler proof of the lower bound on the number of transitions.
引用
收藏
页码:257 / 277
页数:21
相关论文
共 50 条
  • [31] A practical O(n log2n) time algorithm for computing the triplet distance on binary trees
    Andreas Sand
    Gerth Stølting Brodal
    Rolf Fagerberg
    Christian NS Pedersen
    Thomas Mailund
    BMC Bioinformatics, 14
  • [32] 一种O(n+nlog2m)时间复杂度的排序算法
    鲁晓明
    钟诚
    广西科学院学报, 2002, (04) : 151 - 154
  • [33] An O(n2 log n) time algorithm for computing shortest paths amidst growing discs in the plane
    Maheshwari, Anil
    Nussbaum, Doron
    Sack, Joerg-Ruediger
    Yi, Jiehua
    ALGORITHMS AND COMPUTATION, 2007, 4835 : 668 - 680
  • [34] Computing the Quartet Distance between Evolutionary Trees in Time O(n log n)
    Gerth Stølting Brodal
    Rolf Fagerberg
    Christian N.S. Pedersen
    Algorithmica , 2004, 38 : 377 - 395
  • [35] Computing Voronoi Diagrams of Line Segments in RK in O(n log n) Time
    Holcomb, Jeffrey W.
    Cobb, Jorge A.
    ADVANCES IN VISUAL COMPUTING, PT II (ISVC 2015), 2015, 9475 : 755 - 766
  • [36] Computing the quartet distance between evolutionary trees in time O(n log n)
    Brodal, GS
    Fagerberg, R
    Pedersen, CNS
    ALGORITHMICA, 2004, 38 (02) : 377 - 395
  • [37] Perfect Matchings in O (n1.5) Time in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    COMBINATORICA, 2019, 39 (02) : 323 - 354
  • [38] NEW EXPRESSIONS FOR THE EIGENVALUES OF THE INVARIANT OPERATORS OF O(N) AND SP(2N)
    NWACHUKU, CO
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) : 1260 - 1266
  • [39] Computing the 2-median on tree networks in O(n lg n) time (vol 26, pg 305, 1995)
    Gavish, B
    Sridhar, S
    NETWORKS, 1996, 27 (02) : 169 - 169