Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system

被引:60
|
作者
Woloszyn, Jerzy [1 ]
Szopa, Krystian [1 ]
Czerwinski, Grzegorz [1 ]
机构
[1] AGH Univ Sci & Technol, 30 Mickiewicza Av, PL-30059 Krakow, Poland
关键词
Thermal energy storage; Phase change material; Heat transfer enhancement; CFD; Combined technique; Helical-conical-spiral fins; PHASE-CHANGE MATERIAL; PERFORMANCE EVALUATION; DESIGN PARAMETERS; INCLINATION ANGLE; CONVECTION; FINS; CONFIGURATION; EXCHANGER; MODULE;
D O I
10.1016/j.applthermaleng.2021.117332
中图分类号
O414.1 [热力学];
学科分类号
摘要
The dominant technology among latent heat thermal energy storage methods relies on solid-liquid phase change. Since the primary disadvantage of phase change materials is low thermal conductivity, heat transfer enhancement techniques are required for these types of systems. In this paper, we propose a new double tube latent heat thermal energy storage units. The melting time and exergy efficiency are compared for eight different design solutions. 3D simulations of the phase change material melting process were performed using the enthalpy-porosity model, Boussinesq approximation, and select temperature-dependent phase change material properties. This study shows that the proposed latent heat thermal energy storage unit (M06) significantly reduces PCM melting time compared with vertical (76%), horizontal (66%), and helical-coiled (53%) systems. The helical-coiled unit with spiral fins (M05) has the highest exergy efficiency (0.77) at the end of melting time. The M05, M06 and M08 units have the highest exergy efficiency at times t = 1200 s and t = 3307 s, which is essential for climates with time constraints on latent heat thermal energy storage.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins
    Yang, Xiaohu
    Lu, Zhao
    Bai, Qingsong
    Zhang, Qunli
    Jin, Liwen
    Yan, Jinyue
    APPLIED ENERGY, 2017, 202 : 558 - 570
  • [32] Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system
    Hosseini, M. J.
    Rahimi, M.
    Bahrampoury, R.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 50 : 128 - 136
  • [33] Experimental Study on the Heat Transfer Characteristics of an Inclined Shell-and-Tube Phase-Change Thermal Energy Storage Unit
    Zhang, Kun
    He, Xiaoliang
    Wang, Liangbi
    Yu, Yan
    Frontiers in Energy Research, 2022, 10
  • [34] Experimental Study on the Heat Transfer Characteristics of an Inclined Shell-and-Tube Phase-Change Thermal Energy Storage Unit
    Zhang, Kun
    He, Xiaoliang
    Wang, Liangbi
    Yu, Yan
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [35] Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins
    Al-Mudhafar, Ahmed H. N.
    Nowakowski, Andrzej F.
    Nicolleau, Franck C. G. A.
    ENERGY REPORTS, 2021, 7 : 120 - 126
  • [36] Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins
    Al-Mudhafar, Ahmed H.N.
    Nowakowski, Andrzej F.
    Nicolleau, Franck C.G.A.
    Energy Reports, 2021, 7 : 120 - 126
  • [37] Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments
    Fabian Rösler
    Dieter Brüggemann
    Heat and Mass Transfer, 2011, 47 : 1027 - 1033
  • [38] Investigation on optimal shell-to-tube radius ratio of a vertical shell-and-tube latent heat energy storage system
    Shen, Gang
    Wang, Xiaolin
    Chan, Andrew
    Cao, Feng
    Yin, Xiang
    SOLAR ENERGY, 2020, 211 : 732 - 743
  • [39] Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments
    Roesler, Fabian
    Brueggemann, Dieter
    HEAT AND MASS TRANSFER, 2011, 47 (08) : 1027 - 1033
  • [40] A Periodic Horizontal Shell-And-Tube Structure as an Efficient Latent Heat Thermal Energy Storage Unit
    Woloszyn, Jerzy
    Szopa, Krystian
    Energies, 17 (22):