Pseudo-Marginal MCMC for Parameter Estimation in alpha-Stable Distributions

被引:3
|
作者
Riabiz, Marina [1 ]
Lindsten, Fredrik [1 ]
Godsill, Simon [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc & Commun Lab, Cambridge CB2 1PZ, England
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 28期
基金
英国工程与自然科学研究理事会;
关键词
BAYESIAN-INFERENCE;
D O I
10.1016/j.ifacol.2015.12.173
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The alpha-stable distribution is very useful for modelling data with extrelne values and skewed behaviour. The distribution is governed by two key parameters, tail thickness and skewness, in addition to scale and location. Inferring these parameters is difficult due to the lack of a closed form expression of the probability density. We develop a Bayesian method, based on the pseudo-marginal MCMC approach, that requires only unbiased estimates of the intractable likelihood. To compute these estimates we build an adaptive importance sampler for a latent variable-representation of the alpha-stable density. This representation has previously been used in the literature for conditional MCMC sampling of the parameters, and we compare our method with this approach. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:472 / 477
页数:6
相关论文
共 50 条
  • [31] Method for artefact detection and suppression using alpha-stable distributions
    Tesar, L
    Quinn, A
    [J]. ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 2001, : 414 - 417
  • [32] Robust detection and motion parameter estimation for weak maneuvering target in the alpha-stable noise environment
    Huang, Xiang
    Zhang, Linrang
    Chen, Zhanye
    Zhao, Rui
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 108
  • [33] A Novel Parameter Estimation Method Based on a Tuneable Sigmoid in Alpha-Stable Distribution Noise Environments
    Li, Li
    Younan, Nicolas H.
    Shi, Xiaofei
    [J]. SENSORS, 2018, 18 (09)
  • [34] BLIND SOURCE SEPARATION USING MIXTURES OF ALPHA-STABLE DISTRIBUTIONS
    Keriven, Nicolas
    Deleforge, Antoine
    Liutkus, Antoine
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 771 - 775
  • [35] Skewed alpha-stable distributions for modeling and classification of musical instruments
    Ozbek, Mehmet Erdal
    Cek, Mehmet Emre
    Savaci, Ferit Acar
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 (06) : 934 - 947
  • [36] Statistical image fusion with generalised gaussian and alpha-stable distributions
    Loza, Artur
    Achim, Alin
    Bull, David
    Canagarajah, Nishan
    [J]. PROCEEDINGS OF THE 2007 15TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, 2007, : 268 - +
  • [37] Fast estimation of the parameters of alpha-stable impulsive interference
    Tsihrintzis, GA
    Nikias, CL
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (06) : 1492 - 1503
  • [38] Modeling the ultrasound backscattered signal using alpha-stable distributions
    Petropulu, AP
    Wang, R
    Piccoli, K
    [J]. 1996 IEEE ULTRASONICS SYMPOSIUM, PROCEEDINGS, VOLS 1 AND 2, 1996, : 1093 - 1096
  • [39] Fast estimation of the parameters of alpha-stable impulsive interference
    Univ of Virginia, Charlottesville, United States
    [J]. IEEE Trans Signal Process, 6 (1492-1503):
  • [40] Estimation and Comparison of Signed Symmetric Covariation Coefficient and Generalized Association Parameter for Alpha-stable Dependence Modeling
    Kodia, B.
    Garel, B.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (24) : 5156 - 5174