Pseudo-Marginal MCMC for Parameter Estimation in alpha-Stable Distributions

被引:3
|
作者
Riabiz, Marina [1 ]
Lindsten, Fredrik [1 ]
Godsill, Simon [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc & Commun Lab, Cambridge CB2 1PZ, England
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 28期
基金
英国工程与自然科学研究理事会;
关键词
BAYESIAN-INFERENCE;
D O I
10.1016/j.ifacol.2015.12.173
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The alpha-stable distribution is very useful for modelling data with extrelne values and skewed behaviour. The distribution is governed by two key parameters, tail thickness and skewness, in addition to scale and location. Inferring these parameters is difficult due to the lack of a closed form expression of the probability density. We develop a Bayesian method, based on the pseudo-marginal MCMC approach, that requires only unbiased estimates of the intractable likelihood. To compute these estimates we build an adaptive importance sampler for a latent variable-representation of the alpha-stable density. This representation has previously been used in the literature for conditional MCMC sampling of the parameters, and we compare our method with this approach. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:472 / 477
页数:6
相关论文
共 50 条
  • [1] ROBUST AND EFFICIENT ESTIMATION OF THE SHAPE PARAMETER OF ALPHA-STABLE DISTRIBUTIONS
    Kangogo, Eliud K.
    Kozek, Andrzej S.
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2015, 49 (01) : 87 - 104
  • [2] Accelerating pseudo-marginal MCMC using Gaussian processes
    Drovandi, Christopher C.
    Moores, Matthew T.
    Boys, Richard J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 118 : 1 - 17
  • [3] Parameter estimation for linear alpha-stable processes
    Swami, A
    Sadler, B
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (02) : 48 - 50
  • [4] ON PARAMETER ESTIMATION OF SYMMETRIC ALPHA-STABLE DISTRIBUTION
    Bibalan, Mohammadreza Hassannejad
    Amindavar, Hamidreza
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4328 - 4332
  • [5] Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC
    Filippone, Maurizio
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 614 - 619
  • [6] On some parameter estimation problems in alpha-stable processes
    Swami, A
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3541 - 3544
  • [7] Pseudo-Marginal MCMC Sampling for Image Segmentation Using Nonparametric Shape Priors
    Erdil, Ertunc
    Yildirim, Sinan
    Tasdizen, Tolga
    Cetin, Mujdat
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5702 - 5715
  • [8] Parameter estimation of the alpha-stable distribution and applications to financial data
    Coulibaly, Bakary D.
    Chaibi, Ghizlane
    El Khomssi, Mohammed
    [J]. CHILEAN JOURNAL OF STATISTICS, 2024, 15 (01): : 60 - 80
  • [9] Some New Results on Parameter Estimation of Alpha-Stable Distribution
    Li, Li
    Yu, Li
    Zhu, Guangxi
    Bai, Yun
    [J]. 2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 1381 - 1384
  • [10] Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter
    Drovandi, Christopher
    Everitt, Richard G.
    Golightly, Andrew
    Prangle, Dennis
    [J]. BAYESIAN ANALYSIS, 2022, 17 (01): : 223 - 260