Colloidal self-assembly at an interface

被引:203
|
作者
McGorty, Ryan [1 ]
Fung, Jerome [1 ]
Kaz, David [1 ]
Manoharan, Vinothan N. [1 ,2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
OIL-WATER INTERFACE; RIGID PROBE PARTICLE; INDUCED CAPILLARY ATTRACTION; LIQUID INTERFACE; LATEX-PARTICLES; FINE PARTICLES; EMULSION DROPLETS; FORCES; MONOLAYERS; COLLOIDOSOMES;
D O I
10.1016/S1369-7021(10)70107-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mix a drop of water into a vial of oil. With some surfactant and a vigorous shake, that one droplet has become thousands, and the total interfacial area has increased by an order of magnitude or more. Like the folded membranes in our mitochondria, the alveoli in our lungs, and the catalytic converters in our cars, oil-water emulsions contain a vast reservoir of interfacial area that can be used to control and transform the things that encounter it. The oil-water interface is especially well-suited to directing the assembly of colloidal particles, which bind to it rapidly and often irreversibly.
引用
收藏
页码:34 / 42
页数:9
相关论文
共 50 条
  • [21] Synthesis and self-assembly of colloidal nanoparticles
    Weller, H
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803): : 229 - 239
  • [22] Entropic networks in colloidal self-assembly
    Tlusty, T
    Safran, SA
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1782): : 879 - 881
  • [23] Relevance of packing to colloidal self-assembly
    Cersonsky, Rose K.
    van Anders, Greg
    Dodd, Paul M.
    Glotzer, Sharon C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (07) : 1439 - 1444
  • [24] Self-assembly of reconfigurable colloidal molecules
    Ortiz, Daniel
    Kohlstedt, Kevin L.
    Trung Dac Nguyen
    Glotzer, Sharon C.
    SOFT MATTER, 2014, 10 (20) : 3541 - 3552
  • [25] COLLOIDAL SELF-ASSEMBLY Designed to yield
    Frenkel, Daan
    Wales, David J.
    NATURE MATERIALS, 2011, 10 (06) : 410 - 411
  • [26] An Active Approach to Colloidal Self-Assembly
    Mallory, Stewart A.
    Valeriani, Chantal
    Cacciuto, Angelo
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 69, 2018, 69 : 59 - 79
  • [27] Staged Self-Assembly of Colloidal Metastructures
    Chen, Qian
    Bae, Sung Chul
    Granick, Steve
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (27) : 11080 - 11083
  • [28] Coupled Dynamics of Colloidal Nanoparticle Spreading and Self-Assembly at a Fluid-Fluid Interface
    Balazs, Daniel M.
    Dunbar, Tyler A.
    Smilgies, Detlef-M
    Hanrath, Tobias
    LANGMUIR, 2020, 36 (22) : 6106 - 6115
  • [29] Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach
    Ye, Xin
    Huang, Jin
    Zeng, Yong
    Sun, Lai-Xi
    Geng, Feng
    Liu, Hong-Jie
    Wang, Feng-Rui
    Jiang, Xiao-Dong
    Wu, Wei-Dong
    Zheng, Wan-Guo
    NANOMATERIALS, 2017, 7 (10)
  • [30] Laser-accelerated self-assembly of colloidal particles at the water-air interface
    Zhong, Mincheng
    Wang, Ziqiang
    Li, Yinmei
    CHINESE OPTICS LETTERS, 2017, 15 (05)