Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions

被引:0
|
作者
Farid, Ghulam [1 ]
Kwun, Young Chel [2 ]
Yasmeen, Hafsa [1 ]
Akkurt, Abdullah [3 ]
Kang, Shin Min [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Punjab, Pakistan
[2] Dong A Univ, Dept Math, Busan 49315, South Korea
[3] Kahramanmaras Sutcu Imam Univ, Fac Sci & Arts, Dept Math, TR-46100 Kahramanmaras, Turkey
[4] Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
关键词
(h - m)-convex function; Strongly (h - m)- convex function; (alpha; h-m)-convex function; Strongly; Hadamard inequality; Riemann-Liouville fractional integrals; HERMITE-HADAMARD INEQUALITY; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13662-021-03548-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new integral inequalities for strongly (alpha, h - m)- cony ex functions via generalized Riemann-Liouville fractional integrals are established. The outcomes of this paper provide refinements of some fractional integral inequalities for strongly convex, strongly m-convex, strongly (alpha, m)-convex, and strongly (h - m)-convex functions. Also, the refinements of error estimations of these inequalities are obtained by using two fractional integral identities. Moreover, using a parameter substitution and a constant multiplier, k-fractional versions of established inequalities are also given.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] New integral inequalities involving generalized Riemann-Liouville fractional operators
    Delgado, Juan Gabriel Galeano
    Valdes, Juan E. Napoles
    Reyes, Edgardo Perez
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 481 - 487
  • [32] Some generalized Riemann-Liouville k-fractional integral inequalities
    Praveen Agarwal
    Jessada Tariboon
    Sotiris K Ntouyas
    Journal of Inequalities and Applications, 2016
  • [33] Some generalized Riemann-Liouville k-fractional integral inequalities
    Agarwal, Praveen
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [34] Estimations of Riemann-Liouville k-fractional integrals via convex functions
    Farid, Ghulam
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (01): : 71 - 78
  • [35] Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α,m)-preinvex functions
    Du, TingSong
    Liao, JiaGen
    Chen, LianZi
    Awan, Muhammad Uzair
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [36] Generalized Riemann-Liouville k-Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities
    Kwun, Young Chel
    Farid, Ghulum
    Nazeer, Waqas
    Ullah, Sami
    Kang, Shin Min
    IEEE ACCESS, 2018, 6 : 64946 - 64953
  • [37] RIEMANN-LIOUVILLE FRACTIONAL VERSIONS OF HADAMARD INEQUALITY FOR STRONGLY (α, m)-CONVEX FUNCTIONS
    Farid, Ghulam
    Akbar, Saira Bano
    Rathour, Laxmi
    Mishra, Lakshmi Narayan
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 687 - 704
  • [38] Riemann-Liouville Fractional Newton's Type Inequalities for Differentiable Convex Functions
    Sitthiwirattham, Thanin
    Nonlaopon, Kamsing
    Ali, Muhammad Aamir
    Budak, Huseyin
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [39] Hermite-Hadamard Type Inequalities for s-Convex Functions via Riemann-Liouville Fractional Integrals
    Wang, Shu-Hong
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 1124 - 1134
  • [40] NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR CONVEX FUNCTIONS
    Qi, Yongfang
    Li, Guoping
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)