ANFIS-Net for automatic detection of COVID-19

被引:15
|
作者
Al-Ali, Afnan [1 ]
Elharrouss, Omar [1 ]
Qidwai, Uvais [1 ]
Al-Maaddeed, Somaya [1 ]
机构
[1] Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar
关键词
BRAIN-TUMOR DETECTION; DIAGNOSIS;
D O I
10.1038/s41598-021-96601-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Among the most leading causes of mortality across the globe are infectious diseases which have cost tremendous lives with the latest being coronavirus (COVID-19) that has become the most recent challenging issue. The extreme nature of this infectious virus and its ability to spread without control has made it mandatory to find an efficient auto-diagnosis system to assist the people who work in touch with the patients. As fuzzy logic is considered a powerful technique for modeling vagueness in medical practice, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was proposed in this paper as a key rule for automatic COVID-19 detection from chest X-ray images based on the characteristics derived by texture analysis using gray level co-occurrence matrix (GLCM) technique. Unlike the proposed method, especially deep learning-based approaches, the proposed ANFIS-based method can work on small datasets. The results were promising performance accuracy, and compared with the other state-of-the-art techniques, the proposed method gives the same performance as the deep learning with complex architectures using many backbone.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images
    Fan, Deng-Ping
    Zhou, Tao
    Ji, Ge-Peng
    Zhou, Yi
    Chen, Geng
    Fu, Huazhu
    Shen, Jianbing
    Shao, Ling
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (08) : 2626 - 2637
  • [22] MIX-NET: AUTOMATIC SEGMENTATION OF COVID-19 CT IMAGES BASED ON PARALLEL DESIGN
    Dong, Aimei
    Wang, Ruixin
    Lv, Guohua
    Zhao, Guixin
    Zhai, Yi
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2145 - 2149
  • [23] END-TO-END NETWORK BASED ON TRANSFORMER FOR AUTOMATIC DETECTION OF COVID-19
    Cai, Cong
    Liu, Bin
    Tao, Jianhua
    Tian, Zhengkun
    Lu, Jiahao
    Wang, Kexin
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 9082 - 9086
  • [24] Spanish Corpora of tweets about COVID-19 vaccination for automatic stance detection
    Martinez, Ruben Yanez
    Blanco, Guillermo
    Lourenco, Analia
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [25] Data-Based Automatic Covid-19 Rumors Detection in Social Networks
    Bamiro, Bolaji
    Assayad, Ismail
    NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 815 - 827
  • [26] Automatic detection of COVID-19 from chest radiographs using deep learning
    Pandit, M. K.
    Banday, S. A.
    Naaz, R.
    Chishti, M. A.
    RADIOGRAPHY, 2021, 27 (02) : 483 - 489
  • [27] The Social Safety Net in the Wake of COVID-19
    Bitler, Marianne P.
    Hoynes, Hilary W.
    Schanzenbach, Diane Whitmore
    BROOKINGS PAPERS ON ECONOMIC ACTIVITY, 2020, : 119 - 145
  • [28] Transfer Learning-Based Cough Representations for Automatic Detection of COVID-19
    Solera-Urena, Ruben
    Botelho, Catarina
    Teixeira, Francisco
    Rolland, Thomas
    Abad, Alberto
    Trancoso, Isabel
    INTERSPEECH 2021, 2021, : 436 - 440
  • [29] Net Impact of COVID-19 on REIT Returns
    Cai, Yongpei
    Xu, Kuan
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2022, 15 (08)
  • [30] A NET-thrombosis axis in COVID-19
    Hidalgo, Andres
    BLOOD, 2020, 136 (10) : 1118 - 1119