Propagation of longest-edge mesh patterns in local adaptive refinement

被引:7
|
作者
Suarez, J. P. [1 ]
Plaza, A. [2 ]
Carey, G. F. [3 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Cartog & Graph Engn, Las Palmas Gran Canaria, Spain
[2] Univ Las Palmas Gran Canaria, Dept Math, Las Palmas Gran Canaria, Spain
[3] Univ Texas Austin, ICES, Austin, TX 78712 USA
来源
关键词
adaptive mesh refinement; longest edge propagation statistics;
D O I
10.1002/cnm.956
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We examine the propagation of local adaptive mesh refinement (AMR) under a longest edge conformity scheme. Supporting numerical studies are included and discussed. Of specific interest is the statistical behaviour of the propagation zone in AMR of simplicial meshes. To this end three propagation metrics are used: the total number of original triangles in the propagation paths emanating from any target element, the longest individual edge path, and the extent of secondary refinement due to the conformity. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:543 / 553
页数:15
相关论文
共 50 条
  • [11] Refinement based on longest-edge and self-similar four-triangle partitions
    Padron, Miguel A.
    Suarez, Jose P.
    Plaza, Angel
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 75 (5-6) : 251 - 262
  • [12] Properties of triangulations obtained by the longest-edge bisection
    Perdomo, Francisco
    Plaza, Angel
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (12): : 1796 - 1810
  • [13] Mesh quality improvement and other properties in the four-triangles longest-edge partition
    Plaza, A
    Suárez, JP
    Padrón, MA
    Falcón, S
    Amieiro, D
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (04) : 353 - 369
  • [14] A new proof of the degeneracy property of the longest-edge n-section refinement scheme for triangular meshes
    Perdomo, Francisco
    Plaza, Angel
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 2342 - 2344
  • [15] The eight-tetrahedra longest-edge partition and Kuhn triangulations
    Plaza, Angel
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (03) : 427 - 433
  • [16] LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS
    BERGER, MJ
    COLELLA, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) : 64 - 84
  • [17] On the non-degeneracy property of the longest-edge trisection of triangles
    Plaza, Angel
    Falcon, Sergio
    Suarez, Jose P.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) : 862 - 869
  • [18] Longest-edge n-section algorithms: Properties and open problems
    Korotov, Sergey
    Plaza, Angel
    Suarez, Jose P.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 293 : 139 - 146
  • [19] IMPLICIT ADAPTIVE MESH REFINEMENT FOR DISPERSIVE TSUNAMI PROPAGATION
    Berger, Marsha J.
    Leveque, Randall J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04): : B554 - B578
  • [20] Parallel graph-grammar-based algorithm for the longest-edge refinement of triangular meshes and the pollution simulations in Lesser Poland area
    Krzysztof Podsiadło
    Albert Oliver Serra
    Anna Paszyńska
    Rafael Montenegro
    Ian Henriksen
    Maciej Paszyński
    Keshav Pingali
    [J]. Engineering with Computers, 2021, 37 : 3857 - 3880