A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes

被引:45
|
作者
Medeiros, Lia [1 ,2 ,3 ]
Psaltis, Dimitrios [2 ,3 ]
Ozel, Feryal [2 ,3 ]
机构
[1] Inst Adv Study, Sch Nat Sci, 1 Einstein Dr, Princeton, NJ 08540 USA
[2] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA
来源
ASTROPHYSICAL JOURNAL | 2020年 / 896卷 / 01期
基金
美国国家科学基金会;
关键词
black hole physics; Black holes; Principal component analysis; Astronomical simulations; General relativity; Spacetime metric; Geodesics; ROTATING RELATIVISTIC STARS; HAIR THEOREM; REDSHIFT; ORBITS; SET;
D O I
10.3847/1538-4357/ab8bd1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Event Horizon Telescope (EHT) is taking the first images of black holes resolved at horizon scales to measure their shadows and probe accretion physics. A promising avenue for testing the hypothesis that astrophysical black holes are described by the Kerr solution to Einstein's equations is to compare the size and shape of the shadow a black hole casts on the surrounding emission to the predictions of the Kerr metric. We develop here an efficient parametric framework to perform this test. We carry out ray-tracing simulations for several parameterized non-Kerr metrics to create a large data set of non-Kerr shadows that probe the allowed parameter space for the free parameters of each metric. We then perform principal components analysis (PCA) on this set of shadows and show that only a small number of components are needed to accurately reconstruct all shadows within the set. We further show that the amplitude of the PCA components are smoothly related to the free parameters in the metrics and, therefore, that these PCA components can be fit to EHT observations in order to place constraints on the free parameters of these metrics that will help quantify any potential deviations from the Kerr solution.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Radiation processes in the vicinity of non-Schwarzschild and non-Kerr black holes
    Konoplya, R. A.
    Zhidenko, A.
    PHYSICAL REVIEW D, 2013, 87 (02):
  • [32] Shapes and positions of black-hole shadows in accretion disks
    Takahashi, R
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (06) : 1808 - 1812
  • [33] Hamiltonian approach to black hole entropy: Kerr-like spacetimes
    Blagojevic, M.
    Cvetkovic, B.
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [34] Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes
    Jiang, Jiachen
    Bambi, Cosimo
    Steiner, James F.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (05):
  • [35] Curvature induced scalarization of Kerr-Newman black hole spacetimes
    Zhang, Ming
    Jiang, Jie
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [36] Charged-particle motion around a rotating non-Kerr black hole immersed in a uniform magnetic field
    Abdujabbarov, Ahmadjon A.
    Ahmedov, Bobomurat J.
    Jurayeva, Nozima B.
    PHYSICAL REVIEW D, 2013, 87 (06):
  • [37] Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows
    Roeder, Jan
    Cruz-Osorio, Alejandro
    Fromm, Christian M.
    Mizuno, Yosuke
    Younsi, Ziri
    Rezzolla, Luciano
    ASTRONOMY & ASTROPHYSICS, 2023, 671
  • [38] Massive vector fields in Kerr-Newman and Kerr-Sen black hole spacetimes
    Cayuso, Ramiro
    Dias, Oscar J. C.
    Gray, Finnian
    Kubiznak, David
    Margalit, Aoibheann
    Santos, Jorge E.
    Souza, Renato Gomes
    Thiele, Leander
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [39] Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr -de Sitter black hole spacetimes
    Kraniotis, G. V.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (07) : 1775 - 1808
  • [40] Kerr black hole shadows from axion-photon coupling
    Chen, Songbai
    Jing, Jiliang
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05):