Short-Term Forecasting of Natural Gas Consumption Using Factor Selection Algorithm and Optimized Support Vector Regression

被引:44
|
作者
Wei, Nan [1 ,2 ]
Li, Changjun [1 ,2 ]
Li, Chan [3 ]
Xie, Hanyu [1 ,2 ]
Du, Zhongwei [4 ]
Zhang, Qiushi [4 ]
Zeng, Fanhua [4 ]
机构
[1] Southwest Petr Univ, Coll Petr Engn, Chengdu 610500, Sichuan, Peoples R China
[2] Southwest Petr Univ, CNPC Key Lab Oil & Gas Storage & Transportat, Chengdu 610500, Sichuan, Peoples R China
[3] PetroChina Nat Gas Mkt Co, South Branch, Guangzhou 510000, Guangdong, Peoples R China
[4] Univ Regina, Fac Engn & Appl Sci, Regina, SK S4S 0A2, Canada
基金
中国国家自然科学基金;
关键词
genetic algorithm (GA); support vector regression (SVR); factor selection; natural gas consumption; forecasting; AI; GENETIC ALGORITHM; NEURAL-NETWORK; PREDICTION; COMBINATION; PRICES; MODELS;
D O I
10.1115/1.4041413
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Forecasting of natural gas consumption has been essential for natural gas companies, customers, and governments. However, accurate forecasting of natural gas consumption is difficult, due to the cyclical change of the consumption and the complexity of the factors that influence the consumption. In this work, we constructed a hybrid artificial intelligence ( AI) model to predict the short-term natural gas consumption and examine the effects of the factors in the consumption cycle. The proposed model combines factor selection algorithm (FSA),life genetic algorithm (LGA), and support vector regression (SVR), namely, as FSA-LGA-SVR. FSA is used to select factors automatically for different period based on correlation analysis. The LGA optimized SVR is utilized to provide the prediction of time series data. To avoid being trapped in local minima, the hyper-parameters of SVR are determined by LGA, which is enhanced due to newly added "learning" and "death" operations in conventional genetic algorithm. Additionally, in order to examine the effects of the factors in different period, we utilized the recent data of three big cities in Greece and divided the data into 12 subseries. The prediction results demonstrated that the proposed model can give a better performance of short-term natural gas consumption forecasting compared to the estimation value of existing models. Particularly, the mean absolute range normalized errors of the proposed model in Athens, Thessaloniki, and Larisa are 1.90%, 2.26%, and 2.12%, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
    Hu, Zhongyi
    Bao, Yukun
    Xiong, Tao
    Applied Soft Computing Journal, 2014, 25 : 15 - 25
  • [22] Support vector machines with PSO algorithm for short-term load forecasting
    Sun, Changyin
    Gong, Dengcai
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, 2006, : 676 - 680
  • [23] Support Vector Machine with PSO Algorithm in Short-term Load Forecasting
    Gao Rong
    Liu Xiaohua
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 1140 - 1142
  • [24] Very Short-Term Load Forecasting Using Hybrid Algebraic Prediction and Support Vector Regression
    Capuno, Marlon
    Kim, Jung-Su
    Song, Hwachang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [25] Short-term Load Forecasting using Support Vector Regression Based on Pattern-base
    Guo, Ying-Chun
    Niu, Dong-Xiao
    2009 FIRST ASIAN CONFERENCE ON INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2009, : 336 - 340
  • [26] Short-term wind speed forecasting using variational mode decomposition and support vector regression
    Wang, Xiaodan
    Yu, Qibing
    Yang, Yi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3811 - 3820
  • [27] Short-Term PV Power Forecasting Using Support Vector Regression and Local Monitoring Data
    Fentis, Ayoub
    Bahatti, Lhoussine
    Mestari, Mohamed
    Tabaa, Mohamed
    Jarrou, Abderrahmane
    Chouri, Brahim
    PROCEEDINGS OF 2016 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 16), 2016, : 1092 - 1097
  • [28] Short-Term Load Forecasting Using Support Vector Regression-Based Local Predictor
    Li, M. S.
    Wu, J. L.
    Ji, T. Y.
    Wu, Q. H.
    Zhu, L.
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [29] Short-term load forecasting based on support vector regression and load profiling
    Sousa, Joao C.
    Jorge, Humberto M.
    Neves, Luis P.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (03) : 350 - 362
  • [30] Research on methods of short-term traffic forecasting based on support vector regression
    School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
    Beijing Jiaotong Daxue Xuebao, 2006, 3 (19-22):