Application of the homogenization approximation to rough one-dimensional photonic crystals

被引:4
|
作者
Maskaly, KR
Carter, WC
Averitt, RD
Maxwell, JL
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Los Alamos Natl Lab, MST 10, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, ISR 5, Los Alamos, NM 87545 USA
关键词
D O I
10.1364/OL.30.002930
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As previously reported [Opt. Lett. 29, 2791 (2004)], one-dimensional photonic crystals exhibit a decrease in their normal reflectivity if their interfaces are not flat. We show that the homogenization approximation accurately predicts this diminished optical response by comparing results with finite-difference time-domain (FDTD) simulations applied to the same roughened structures. Within the parameter range tested (rms roughness <20% and rms wavelengths <100% of the photonic crystal periodicity), the homogenization approximation accurately reproduces the reflectivities obtained by the FDTD simulations, which are much more computationally expensive. (c) 2005 Optical Society of America.
引用
收藏
页码:2930 / 2932
页数:3
相关论文
共 50 条
  • [21] Trapped atoms in one-dimensional photonic crystals
    Meenehan, Sean M.
    Hung, Chen-Lung
    Cohen, Justin D.
    Norte, Richard
    Goban, Akihisa
    Yu, Su-Peng
    Hood, Jonathan
    Chang, Darrick E.
    Painter, Oskar
    Kimble, H. Jeff
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [22] DIRECTED DIFFRACTION IN ONE-DIMENSIONAL PHOTONIC CRYSTALS
    Kurilkina, S.
    Belyi, V.
    Mukhurov, N.
    Min'ko, A.
    PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES, 2013, : 90 - 93
  • [23] Eigenwaves in one-dimensional photonic crystals with gain
    L. A. Mel’nikov
    O. N. Kozina
    Optics and Spectroscopy, 2003, 94 : 411 - 417
  • [24] Control of photonic band gaps in one-dimensional photonic crystals
    Zhu, Qiaofen
    Wang, Dayong
    Zhang, Yan
    OPTIK, 2011, 122 (04): : 330 - 332
  • [25] Extension of photonic band gaps in one-dimensional photonic crystals
    V. A. Tolmachev
    T. S. Perova
    Optics and Spectroscopy, 2006, 101 : 791 - 796
  • [26] Numerical Design for the Photonic Bandgap of One-dimensional Photonic Crystals
    Gao, Tantan
    Yuan, Jianhua
    MATERIALS FOR ENVIRONMENTAL PROTECTION AND ENERGY APPLICATION, PTS 1 AND 2, 2012, 343-344 : 166 - 171
  • [27] Extension of photonic band gaps in one-dimensional photonic crystals
    Tolmachev, V. A.
    Perova, T. S.
    OPTICS AND SPECTROSCOPY, 2006, 101 (05) : 791 - 796
  • [28] On electrodynamics of one-dimensional heterogeneous system beyond homogenization approximation
    Vinogradov, AP
    Merzlikin, AM
    ADVANCES IN ELECTROMAGNETICS OF COMPLEX MEDIA AND METAMATERIALS, 2002, 89 : 341 - 361
  • [29] Homogenization method for one-dimensional photonic crystals with magnetic and chiral inclusions (vol 93, 124, 2020)
    Flores Mendez, Javier
    Zenteno Mateo, Benito
    Moreno Moreno, Mario
    Morales-Sanchez, Alfredo
    Minquiz, Gustavo M.
    Vazquez Leal, Hector
    Vivaldo-De la Cruz, Israel
    Cortes-Lopez, Silvia
    Pinon Reyes, Ana Cecilia
    Ambrosio, Roberto
    EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (08):
  • [30] Optical properties of one-dimensional metallodielectric photonic crystals
    Luo Ya-heng
    Wang Yong-sheng
    Wang Dong-dong
    Deng Li-er
    Sun Jian
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28 (02) : 256 - 259