Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data

被引:8
|
作者
Sardo, Emilia [1 ]
Napolitano, Stefania [1 ]
Della Corte, Carminia Maria [1 ]
Ciardiello, Davide [2 ]
Raucci, Antonio [3 ]
Arrichiello, Gianluca [1 ]
Troiani, Teresa [1 ]
Ciardiello, Fortunato [1 ]
Martinelli, Erika [1 ]
Martini, Giulia [1 ]
机构
[1] Univ Campania L Vanvitelli, Oncol Med, Dipartimento Med Precis, I-80131 Naples, Italy
[2] Fdn IRCCS Casa Sollievo Sofferenza, Oncol Med, I-71013 San Giovanni Rotondo, Italy
[3] AORN Antonio Cardarelli, UOC Radiol Gen & Pronto Soccorso, I-80131 Naples, Italy
来源
JOURNAL OF PERSONALIZED MEDICINE | 2022年 / 12卷 / 02期
关键词
omics; colorectal cancer; biomarkers; multiparametric approach; CONSENSUS MOLECULAR SUBTYPES; MICROSATELLITE INSTABILITY; IMMUNE LANDSCAPE; F-18-FDG PET/CT; GUT MICROBIOTA; KRAS MUTATION; COLON; TUMORS; CELLS; BIOMARKERS;
D O I
10.3390/jpm12020128
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Colorectal cancer (CRC) is one of the most frequent tumours and one of the major causes of morbidity and mortality globally. Its incidence has increased in recent years and could be linked to unhealthy dietary habits combined with environmental and hereditary factors, which can lead to genetic and epigenetic changes and induce tumour development. The model of CRC progression has always been based on a genomic, parametric, static and complex approach involving oncogenes and tumour suppressor genes. Recent advances in omics sciences have sought a paradigm shift to a multiparametric, immunological-stromal, and dynamic approach for a better understanding of carcinogenesis and tumour heterogeneity. In the present paper, we review the most important preclinical and clinical data and present recent discoveries in the field of transcriptomics, proteomics, metagenomics and radiomics in CRC disease.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A new approach for multi-omic data integration
    Zuo, Yiming
    Yu, Guoqiang
    Zhang, Chi
    Ressom, Habtom W.
    2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,
  • [22] Multi-omic data analysis using Galaxy
    Jorrit Boekel
    John M Chilton
    Ira R Cooke
    Peter L Horvatovich
    Pratik D Jagtap
    Lukas Käll
    Janne Lehtiö
    Pieter Lukasse
    Perry D Moerland
    Timothy J Griffin
    Nature Biotechnology, 2015, 33 : 137 - 139
  • [23] Editorial: Multi-omic Data Integration in Oncology
    Finotello, Francesca
    Calura, Enrica
    Risso, Davide
    Hautaniemi, Sampsa
    Romualdi, Chiara
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [24] The challenges of integrating multi-omic data sets
    Bernhard Palsson
    Karsten Zengler
    Nature Chemical Biology, 2010, 6 : 787 - 789
  • [25] Holistic exploration of CHGA and hsa-miR-137 in colorectal cancer via multi-omic data Integration
    Safarpour, Hossein
    Ranjbaran, Javad
    Erfanian, Nafiseh
    Nomiri, Samira
    Derakhshani, Afshin
    Gerarduzzi, Casimiro
    Feriz, Adib Miraki
    HosseiniGol, Edris
    Saghafi, Samira
    Silvestris, Nicola
    HELIYON, 2024, 10 (05)
  • [26] Multi-omic, multi-scale characterisation of colorectal cancer defines spatiotemporal patterns of recurrence
    Wood, Colin Stuart
    Da Silva Filho, Joao
    Cameron, Andrew
    Legrini, Assya
    Leslie, Holly
    Zhang, Tengyu
    Doncheva, Yoana
    Kennedy-Dietrich, Claire
    Marti, Matthias
    Edwards, Joanne
    Horgan, Paul
    Roxburgh, Campbell
    Steele, Colin
    Jamieson, Nigel
    CANCER RESEARCH, 2024, 84 (06)
  • [27] Prognostic and biological function value of OSBPL3 in colorectal cancer analyzed by multi-omic data analysis
    Chengxing Wang
    Yaoming He
    Yu He
    Weijun Liang
    Chaorong Zhou
    Meimei Wu
    Zijie Meng
    Wanglin Li
    Jie Cao
    BMC Gastroenterology, 23
  • [28] Prognostic and biological function value of OSBPL3 in colorectal cancer analyzed by multi-omic data analysis
    Wang, Chengxing
    He, Yaoming
    He, Yu
    Liang, Weijun
    Zhou, Chaorong
    Wu, Meimei
    Meng, Zijie
    Li, Wanglin
    Cao, Jie
    BMC GASTROENTEROLOGY, 2023, 23 (01)
  • [29] Computational approaches leveraging integrated connections of multi-omic data toward clinical applications
    Demirel, Habibe Cansu
    Arici, Muslum Kaan
    Tuncbag, Nurcan
    MOLECULAR OMICS, 2022, 18 (01) : 7 - 18
  • [30] Multi-Omic Approaches Identify Metabolic and Autophagy Regulators Important in Ovarian Cancer Dissemination
    Wheeler, Lindsay J.
    Watson, Zachary L.
    Qamar, Lubna
    Yamamoto, Tomomi M.
    Sawyer, Brandon T.
    Sullivan, Kelly D.
    Khanal, Santosh
    Joshi, Molishree
    Ferchaud-Roucher, Veronique
    Smith, Harry
    Vanderlinden, Lauren A.
    Brubaker, Sky W.
    Caino, Cecilia M.
    Kim, Hyunmin
    Espinosa, Joaquin M.
    Richer, Jennifer K.
    Bitler, Benjamin G.
    ISCIENCE, 2019, 19 : 474 - +