Zinc-blende group III-V/group IV epitaxy: Importance of the miscut

被引:0
|
作者
Cornet, C. [1 ]
Charbonnier, S. [2 ]
Lucci, I. [1 ]
Chen, L. [1 ]
Letoublon, A. [1 ]
Alvarez, A. [1 ]
Tavernier, K. [1 ]
Rohel, T. [1 ]
Bernard, R. [1 ]
Rodriguez, J. -B. [3 ]
Cerutti, L. [3 ]
Tournie, E. [3 ]
Leger, Y. [1 ]
Bahri, M. [4 ]
Patriarche, G. [4 ]
Largeau, L. [4 ]
Ponchet, A. [5 ]
Turban, P. [2 ]
Bertru, N. [1 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, Inst FOTON UMR 6082, F-35000 Rennes, France
[2] Univ Rennes, CNRS, IPR Inst Phys Rennes UMR 6251, F-35000 Rennes, France
[3] Univ Montpellier, CNRS, IES, F-34090 Montpellier, France
[4] Univ Paris Saclay, CNRS, Ctr Nanosci & Nanotechnol, F-91120 Palaiseau, France
[5] Univ Toulouse, CEMES CNRS, UPS, 29 Rue Jeanne Marvig,BP 94347, Toulouse 04, France
基金
欧盟地平线“2020”;
关键词
LASER ANNEALING PROCESS; PHASE-FIELD MODEL; DOPANT DIFFUSION; SI; MECHANISMS;
D O I
10.1105/PhysRevMaterials.4.053401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here we clarify the central role of the miscut during group III-V/group IV crystal growth. We show that the miscut impacts the initial antiphase domain distribution, with two distinct nucleation-driven (miscut typically >1 degrees) and terraces-driven (miscut typically <0.1 degrees) regimes. It is then inferred how the antiphase domain distributionmean phase andmean lateral length are affected by themiscut. An experimental confirmation is given through the comparison of antiphase domain distributions in GaP and GaSb/AlSb samples grown on nominal and vicinal Si substrates. The antiphase domain burying step of GaP/Si samples is then observed at the atomic scale by scanning tunneling microscopy. The steps arising from the miscut allow growth rate imbalance between the two phases of the crystal and the growth conditions can deeply modify the imbalance coefficient, as illustrated with GaAs/Si. We finally explain how a monodomain III-V semiconductor configuration can be achieved even on low miscut substrates.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Ab initio studies of the band parameters of III-V and II-VI zinc-blende semiconductors
    Karazhanov, SZ
    Yan Voon, LCL
    SEMICONDUCTORS, 2005, 39 (02) : 161 - 173
  • [22] Epitaxial Growth of III-V Nanowires on Group IV Substrates
    Bakkers, Erik
    Borgstrom, Magnus
    Verheijen, Marcel
    ADVANCES IN GAN, GAAS, SIC AND RELATED ALLOYS ON SILICON SUBSTRATES, 2008, 1068 : 223 - 234
  • [23] Direct Heterointegration of III-V Materials on Group IV Substrates
    Ahmari, D. A.
    McDermott, B. M.
    Thomas, S. G.
    Roof, B. J.
    Hartmann, Q. J.
    Li, X.
    SIGE, GE, AND RELATED COMPOUNDS 4: MATERIALS, PROCESSING, AND DEVICES, 2010, 33 (06): : 849 - 857
  • [24] Epitaxial Growth of III-V Nanowires on Group IV Substrates
    Erik P. A. M. Bakkers
    Magnus T. Borgström
    Marcel A. Verheijen
    MRS Bulletin, 2007, 32 : 117 - 122
  • [25] Epitaxial growth of III-V nanowires on group IV substrates
    Bakkers, Erik P. A. M.
    Borgstrom, Magnus T.
    Verheijen, Marcel A.
    MRS BULLETIN, 2007, 32 (02) : 117 - 122
  • [26] Strategies To Control Morphology in Hybrid Group III-V/Group IV Heterostructure Nanowires
    Hillerich, Karla
    Dick, Kimberly A.
    Wen, Cheng-Yen
    Reuter, Mark C.
    Kodambaka, Suneel
    Ross, Frances M.
    NANO LETTERS, 2013, 13 (03) : 903 - 908
  • [27] PSEUDOPOTENTIAL CALCULATION OF TRANSVERSE EFFECTIVE CHARGES FOR III-V AND II-VI COMPOUNDS OF ZINC-BLENDE STRUCTURE
    BENNETT, BI
    MARADUDIN, AA
    PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (10): : 4146 - +
  • [28] Inapplicability of Martin transformation to elastic constants of zinc-blende and wurtzite group-III nitride alloys
    &Lstrok;epkowski, S.P., 1600, American Institute of Physics Inc. (117):
  • [29] Lattice Dynamical Properties of Group-III Nitrides AN (A = B, Al, Ga and In) in Zinc-Blende Phase
    A. K. Kushwaha
    International Journal of Thermophysics, 2016, 37
  • [30] Droplet epitaxy of zinc-blende GaN quantum dots
    Schupp, T.
    Meisch, T.
    Neuschl, B.
    Feneberg, M.
    Thonke, K.
    Lischka, K.
    As, D. J.
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (21) : 3235 - 3237