Zinc-blende group III-V/group IV epitaxy: Importance of the miscut

被引:0
|
作者
Cornet, C. [1 ]
Charbonnier, S. [2 ]
Lucci, I. [1 ]
Chen, L. [1 ]
Letoublon, A. [1 ]
Alvarez, A. [1 ]
Tavernier, K. [1 ]
Rohel, T. [1 ]
Bernard, R. [1 ]
Rodriguez, J. -B. [3 ]
Cerutti, L. [3 ]
Tournie, E. [3 ]
Leger, Y. [1 ]
Bahri, M. [4 ]
Patriarche, G. [4 ]
Largeau, L. [4 ]
Ponchet, A. [5 ]
Turban, P. [2 ]
Bertru, N. [1 ]
机构
[1] Univ Rennes, INSA Rennes, CNRS, Inst FOTON UMR 6082, F-35000 Rennes, France
[2] Univ Rennes, CNRS, IPR Inst Phys Rennes UMR 6251, F-35000 Rennes, France
[3] Univ Montpellier, CNRS, IES, F-34090 Montpellier, France
[4] Univ Paris Saclay, CNRS, Ctr Nanosci & Nanotechnol, F-91120 Palaiseau, France
[5] Univ Toulouse, CEMES CNRS, UPS, 29 Rue Jeanne Marvig,BP 94347, Toulouse 04, France
基金
欧盟地平线“2020”;
关键词
LASER ANNEALING PROCESS; PHASE-FIELD MODEL; DOPANT DIFFUSION; SI; MECHANISMS;
D O I
10.1105/PhysRevMaterials.4.053401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here we clarify the central role of the miscut during group III-V/group IV crystal growth. We show that the miscut impacts the initial antiphase domain distribution, with two distinct nucleation-driven (miscut typically >1 degrees) and terraces-driven (miscut typically <0.1 degrees) regimes. It is then inferred how the antiphase domain distributionmean phase andmean lateral length are affected by themiscut. An experimental confirmation is given through the comparison of antiphase domain distributions in GaP and GaSb/AlSb samples grown on nominal and vicinal Si substrates. The antiphase domain burying step of GaP/Si samples is then observed at the atomic scale by scanning tunneling microscopy. The steps arising from the miscut allow growth rate imbalance between the two phases of the crystal and the growth conditions can deeply modify the imbalance coefficient, as illustrated with GaAs/Si. We finally explain how a monodomain III-V semiconductor configuration can be achieved even on low miscut substrates.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantum confinement energies in zinc-blende III-V and group IV semiconductors
    Allan, G
    Niquet, YM
    Delerue, C
    APPLIED PHYSICS LETTERS, 2000, 77 (05) : 639 - 641
  • [2] BORON PHOSPHIDE, A III-V COMPOUND OF ZINC-BLENDE STRUCTURE
    POPPER, P
    INGLES, TA
    NATURE, 1957, 179 (4569) : 1075 - 1075
  • [3] Excitonic contribution to the optical absorption in zinc-blende III-V semiconductors
    Shokhovets, S.
    Gobsch, G.
    Ambacher, O.
    PHYSICAL REVIEW B, 2006, 74 (15)
  • [4] Anisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase
    Wilhelm, Christophe
    Larrue, Alexandre
    Dai, Xing
    Migas, Dmitri
    Soci, Cesare
    NANOSCALE, 2012, 4 (05) : 1446 - 1454
  • [5] Electronic structure of III-V zinc-blende semiconductors from first principles
    Wang, Yin
    Yin, Haitao
    Cao, Ronggen
    Zahid, Ferdows
    Zhu, Yu
    Liu, Lei
    Wang, Jian
    Guo, Hong
    PHYSICAL REVIEW B, 2013, 87 (23)
  • [6] Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells
    Schliemann, J
    Loss, D
    Westervelt, RM
    PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [7] Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure
    Wang, SQ
    Ye, HQ
    PHYSICAL REVIEW B, 2002, 66 (23) : 1 - 7
  • [8] A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SIC and III-V nitrides
    Paulus, B
    Shi, EJ
    Stoll, H
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (13) : 2745 - 2758
  • [9] Do all III-V compounds have the zinc-blende or wurtzite ground state structure?
    Ferhat, M
    Zaoui, A
    APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [10] Hybrid functional study of nonlinear elasticity and internal strain in zinc-blende III-V materials
    Tanner, Daniel S. P.
    Caro, Miguel A.
    Schulz, Stefan
    O'Reilly, Eoin P.
    PHYSICAL REVIEW MATERIALS, 2019, 3 (01)