Symmetries, covariant derivatives and gravity on noncommutative spacetime

被引:0
|
作者
Aschieri, Paolo [1 ]
机构
[1] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
[2] Univ Piemonte Orientale, I-15100 Alessandria, Italy
[3] Ist Nazl Fis Nucl, Sez Torino, I-15100 Alessandria, Italy
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Noncommutative spacetimes and their symmetries can be constructed using the notion of (abelian) Drinfeld twist. We review the general formalism and present the examples of the Poincare *-Lie algebra on Moyal-Weyl deformed Minkowski space and of the *-Lie algebra of vectorfields on an arbitrary twist deformed manifold. The second example defines the notion of Lie derivative. This paves the way to the definition of the covariant derivative. Noncommutative Einstein's gravity equations are formulated.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [31] The κ-(A)dS noncommutative spacetime
    Ballesteros, Angel
    Gutierrez-Sagredo, Ivan
    Herranz, Francisco J.
    [J]. PHYSICS LETTERS B, 2019, 796 : 93 - 101
  • [32] SYMMETRIES AND COVARIANT REPRESENTATIONS
    BORCHERS, HJ
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 1031 : 1 - 15
  • [33] The geometry of noncommutative symmetries
    Paschke, M
    Sitarz, A
    [J]. ACTA PHYSICA POLONICA B, 2000, 31 (09): : 1897 - 1911
  • [34] Covariant noncommutative field theory
    Estrada-Jimenez, S.
    Garcia-Compean, H.
    Obregon, O.
    Ramirez, C.
    [J]. PARTICLES AND FIELDS: XI MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2008, 1026 : 20 - +
  • [35] Noncommutative electrodynamics with covariant coordinates
    Zahn, J
    [J]. PHYSICAL REVIEW D, 2004, 70 (10): : 107704 - 1
  • [36] CONNECTIONS AND SYMMETRIES IN SPACETIME
    HALL, GS
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1988, 20 (04) : 399 - 406
  • [37] REVERSIBILITY AND SPACETIME SYMMETRIES
    BEDRAN, ML
    CALVAO, MO
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (04) : 767 - 771
  • [38] Lorentz covariant κ-Minkowski spacetime
    Dabrowski, Ludwik
    Godlinski, Michal
    Piacitelli, Gherardo
    [J]. PHYSICAL REVIEW D, 2010, 81 (12):
  • [39] Cosmological constant and noncommutative spacetime
    Calmet, X.
    [J]. EPL, 2007, 77 (01)
  • [40] Quantum fields and noncommutative spacetime
    Fredenhagen, K
    [J]. NONCOMMUTATIVE GEOMETRY AND THE STANDARD MODEL OF ELEMENTARY PARTICLE PHYSICS, 2002, 596 : 271 - 277