Model-Based Clustering of Inhomogeneous Paired Comparison Data

被引:0
|
作者
Busse, Ludwig M. [1 ]
Buhmann, Joachim M. [1 ]
机构
[1] ETH, Dept Comp Sci, CH-8092 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper demonstrates the derivation of a clustering model for paired comparison data. Similarities for non-Euclidean, ordinal data are handled in the model such that it is capable of performing an integrated analysis on real-world data with different patterns of missings. Rank-based pairwise comparison matrices with missing entries can be described and compared by means of a probabilistic mixture model defined on the symmetric group. Our EM-method offers two advantages compared to models for pairwise comparison rank data available in the literature: (i) it identifies groups in the pairwise choices based on similarity (ii) it provides the ability to analyze a data set of heterogeneous character w.r.t. to the structural properties of individal data samples. Furthermore, we devise an active learning strategy for selecting paired comparisons that are highly informative to extract the underlying ranking of the objects. The model can be employed to predict pairwise choice probabilities for individuals and, therefore, it can be used for preference modeling.
引用
收藏
页码:207 / 221
页数:15
相关论文
共 50 条
  • [1] Model-Based Clustering of Inhomogeneous Paired Comparison Data
    Busse, Ludwig M.
    Buhmann, Joachim M.
    [J]. SIMILARITY-BASED PATTERN RECOGNITION, 2011, 7005 : 207 - 221
  • [2] Model-based clustering of longitudinal data
    McNicholas, Paul D.
    Murphy, T. Brendan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (01): : 153 - 168
  • [3] Boosting for model-based data clustering
    Saffari, Amir
    Bischof, Horst
    [J]. PATTERN RECOGNITION, 2008, 5096 : 51 - 60
  • [4] Model-based clustering for longitudinal data
    De la Cruz-Mesia, Rolando
    Quintanab, Fernando A.
    Marshall, Guillermo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1441 - 1457
  • [5] Model-Based Clustering of Temporal Data
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 2013, 8131 : 9 - 16
  • [6] The Clustering of Categorical Data: A Comparison of a Model-based and a Distance-based Approach
    Anderlucci, Laura
    Hennig, Christian
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (04) : 704 - 721
  • [7] An Experimental Comparison of Model-Based Clustering Methods
    Marina Meilă
    David Heckerman
    [J]. Machine Learning, 2001, 42 : 9 - 29
  • [8] An experimental comparison of model-based clustering methods
    Meila, M
    Heckerman, D
    [J]. MACHINE LEARNING, 2001, 42 (1-2) : 9 - 29
  • [9] Model-based clustering with missing not at random data
    Sportisse, Aude
    Marbac, Matthieu
    Laporte, Fabien
    Celeux, Gilles
    Boyer, Claire
    Josse, Julie
    Biernacki, Christophe
    [J]. STATISTICS AND COMPUTING, 2024, 34 (04)
  • [10] Model-based clustering and classification of functional data
    Chamroukhi, Faicel
    Nguyen, Hien D.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (04)