A billiard containing all links

被引:1
|
作者
Dehornoy, Pierre [1 ]
机构
[1] Ens Lyon, UMPA, F-69364 Lyon, France
关键词
D O I
10.1016/j.crma.2011.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a 3-dimensional billiard realizing all links as collections of isotopy classes of periodic orbits. For every branched surface supporting a semi-flow, we construct a 3d-billiard whose collections of periodic orbits contain those of the branched surface. R. Christ constructed a knot-holder containing any link as collection of periodic orbits. Applying our construction to his example provides the desired billiard. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:575 / 578
页数:4
相关论文
共 50 条
  • [41] Billiard Circuits in Quadrilaterals
    Knox, Katherine
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (08): : 755 - 759
  • [42] Pseudointegrable Andreev billiard
    Wiersig, J
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036221
  • [43] Billiard quorums on the grid
    Agrawal, D
    Egecioglu, O
    ElAbbadi, A
    INFORMATION PROCESSING LETTERS, 1997, 64 (01) : 9 - 16
  • [44] Quantum billiard chaos
    Liboff, RL
    PHYSICS LETTERS A, 2000, 269 (04) : 230 - 233
  • [45] SOFT BILLIARD SYSTEMS
    BALDWIN, PR
    PHYSICA D, 1988, 29 (03): : 321 - 342
  • [46] The Hexagon Quantum Billiard
    Richard L. Liboff
    Joseph Greenberg
    Journal of Statistical Physics, 2001, 105 : 389 - 402
  • [47] Cantori for the stadium billiard
    Meiss, J. D.
    CHAOS, 1992, 2 (02)
  • [48] Rotating square billiard
    Borgan, S
    Johnson, RC
    PHYSICS LETTERS A, 1999, 262 (06) : 427 - 433
  • [49] Billiard and diophantine approximation
    Florek, Jan
    ACTA ARITHMETICA, 2008, 134 (04) : 317 - 327
  • [50] Billiard characterization of spheres
    Misha Bialy
    Mathematische Annalen, 2019, 374 : 1353 - 1370