Electrochemical characterization of a LiV3O8-polypyrrole composite as a cathode material for lithium ion batteries

被引:34
|
作者
Tian, Fanghua [1 ]
Liu, Li [1 ,2 ]
Yang, Zhenhua [1 ,2 ]
Wang, Xingyan [1 ]
Chen, Quanqi [1 ]
Wang, Xianyou [1 ]
机构
[1] Xiangtan Univ, Sch Chem, Minist Educ,Key Lab Mat Design & Preparat Technol, Key Lab Environmen Friendly Chem & Applicat, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Fac Mareials Optoelect & Phys, Xiangtan 411105, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
LiV3O8-PPy composite; Cathode materials; Lithium ion batteries; Electrochemical properties; LIV3O8; PERFORMANCE; STATE; IMPROVEMENT; LI1+XV3O8; INSERTION; OXIDE;
D O I
10.1016/j.matchemphys.2011.01.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
LiV3O8-Polypyrrole (LiV3O8-PPy) composite has been chemically synthesized by an oxidative polymerization of pyrrole monomer on the surface of LiV3O8 using ferric chloride as oxidizing agent. The electrochemical properties of LiV3O8-PPy composite were systematically investigated using a variety of electrochernical methods. The LiV3O8-PPy composite electrode exhibited better cycling behavior and superior rate capability as compared with the bare LiV3O8 electrode. Cyclic voltammetry corroborated the galvanostatic cycling tests, with the composite cathode material showing better reversibility than bare material. Finally, fitting the impedance results to an equivalent circuit indicated that the enhanced electrochemical performances of LiV3O8-PPy composite resulted from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
  • [21] Low-temperature synthesis of LiV3O8 as cathode material for rechargeable lithium-ion batteries
    Liu, JR
    Wang, M
    Yin, DC
    Huang, WD
    JOURNAL OF INORGANIC MATERIALS, 2002, 17 (03) : 617 - 620
  • [22] High Rate, Long Lifespan LiV3O8 Nanorods as a Cathode Material for Lithium-Ion Batteries
    Chen, Zhongxue
    Xu, Fei
    Cao, Shunan
    Li, Zhengfeng
    Yang, Hanxi
    Ai, Xinping
    Cao, Yuliang
    SMALL, 2017, 13 (18)
  • [23] LiV3O8 and Graphene Oxide Nanocomposite as a Cathode in Lithium-Ion Batteries
    Jiang, Rong
    Ding, Zhiwei
    Huang, Junyuan
    Xie, Yuan
    Wen, Jia
    Ren, Yang
    Liu, Zhu
    Xiao, Bowen
    Zhou, Xiaowei
    ACS APPLIED NANO MATERIALS, 2023, 6 (21) : 20258 - 20268
  • [24] Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery
    Gao, Xuan-Wen
    Wang, Jia-Zhao
    Chou, Shu-Lei
    Liu, Hua-Kun
    JOURNAL OF POWER SOURCES, 2012, 220 : 47 - 53
  • [25] Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries
    Xiangzhong Ren
    Shengming Hu
    Chuan Shi
    Peixin Zhang
    Qiuhua Yuan
    Jianhong Liu
    Journal of Solid State Electrochemistry, 2012, 16 : 2135 - 2141
  • [26] Electrochemical instability of LiV3O8 as an electrode material for aqueous rechargeable lithium batteries
    Caballero, A.
    Morales, J.
    Vargas, O. A.
    JOURNAL OF POWER SOURCES, 2010, 195 (13) : 4318 - 4321
  • [27] Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries
    Ren, Xiangzhong
    Hu, Shengming
    Shi, Chuan
    Zhang, Peixin
    Yuan, Qiuhua
    Liu, Jianhong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) : 2135 - 2141
  • [28] Polypyrrole-coated LiV3O8-nanocomposites with good electrochemical performance as anode material for aqueous rechargeable lithium batteries
    Liu, L. L.
    Wang, X. J.
    Zhu, Y. S.
    Hu, C. L.
    Wu, Y. P.
    Holze, R.
    JOURNAL OF POWER SOURCES, 2013, 224 : 290 - 294
  • [29] A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries
    Liu, Haimei
    Wang, Yonggang
    Yang, Wensheng
    Zhou, Haoshen
    ELECTROCHIMICA ACTA, 2011, 56 (03) : 1392 - 1398
  • [30] Low-temperature synthesized LiV3O8 as a cathode material for rechargeable lithium batteries
    Dai, JX
    Li, SFY
    Gao, ZQ
    Siow, KS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) : 3057 - 3062