De novo sequencing and transcriptome assembly of Arisaema heterophyllum Blume and identification of genes involved in isoflavonoid biosynthesis

被引:18
|
作者
Wang, Chenkai [1 ,2 ,4 ]
Zhu, Jinhang [3 ]
Liu, Miaomiao [1 ,2 ,4 ]
Yang, Qingshan [1 ,2 ,5 ]
Wu, Jiawen [1 ,2 ,4 ,5 ]
Li, Zegeng [1 ,2 ,6 ,7 ]
机构
[1] Anhui Univ Chinese Med, Hefei 230032, Anhui, Peoples R China
[2] Anhui Acad Chinese Med, Hefei 230038, Anhui, Peoples R China
[3] Anhui Med Univ, Hefei 230032, Anhui, Peoples R China
[4] Anhui Univ Chinese Med, Key Lab Xinan Med, Minist Educ, Hefei 230038, Anhui, Peoples R China
[5] Synerget Innovat Ctr Anhui Authent Chinese Med Qu, Hefei 230012, Anhui, Peoples R China
[6] Anhui Univ Tradit Chinese Med, Affiliated Hosp 1, Hefei 230038, Anhui, Peoples R China
[7] State Adm Tradit Chinese Med Peoples Republ China, Key Lab Resp Dis, Hefei 230038, Anhui, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
EST-SSR MARKERS; MICROSATELLITE MARKERS; CONSTRUCTION; ANNOTATION; EXPRESSION; FRUIT; TOOL;
D O I
10.1038/s41598-018-35664-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arisaema heterophyllum Blume (AhBl) is one of the valued medicinal plants. However, its genetic information is limited, which impedes further studies of this valuable resource. To investigate the genes involved in the isoflavonoid biosynthesis, we deeply performed transcriptome sequencing for AhBl. An average of 10.98 Gb clean reads were obtained based on root, tuber and leaf tissues, and 109,937 unigenes were yielded after de novo assembly. In total, 72,287 of those unigenes were annotated in at least one public database. The numbers of expressed unigenes in each tissue were 35,686, 43,363 and 47,783, respectively. The overall expression levels of transcripts in leaf were higher than those in root and tuber. Differentially expressed genes analysis indicated that a total of 12,448 shared unigenes were detected in all three tissues, 10,215 of which were higher expressed in tuber than that in root and leaf. Besides, 87 candidate unigenes that encode for enzymes involved in biosynthesis of isoflavonoid were identified and analyzed, and some key enzyme genes were experimentally validated by quantitative Real-Time PCR (qRT-PCR). This study provides a unique dataset for the systematic analysis of AhBl functional genes and expression characteristics, and facilitates the future study of the pharmacological mechanism of AhBl.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Identification of cordycepin biosynthesis-related genes through de novo transcriptome assembly and analysis in Cordyceps cicadae
    Liu, Tengfei
    Liu, Ziyao
    Yao, Xueyan
    Huang, Ying
    Qu, Qingsong
    Shi, Xiaosa
    Zhang, Hongmei
    Shi, Xinyuan
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (12):
  • [42] Transcriptome Sequencing of Codonopsis pilosula and Identification of Candidate Genes Involved in Polysaccharide Biosynthesis
    Gao, Jian Ping
    Wang, Dong
    Cao, Ling Ya
    Sun, Hai Feng
    PLOS ONE, 2015, 10 (02):
  • [43] Identification of Genes Involved in Flavonoid Biosynthesis in Sophora japonica Through Transcriptome Sequencing
    Zhang, Fu-Sheng
    Wang, Qian-Yu
    Pu, Ya-Jie
    Chen, Tong-Yao
    Qin, Xue-Mei
    Gao, Jie
    CHEMISTRY & BIODIVERSITY, 2017, 14 (12)
  • [44] De novo transcriptome assembly of four organs of Collichthys lucidus and identification of genes involved in sex determination and reproduction
    Song, Wei
    Zhang, YiBing
    Zhang, XiaoJuan
    Gui, JianFang
    PLOS ONE, 2020, 15 (03):
  • [45] De Novo Transcriptome of Safflower and the Identification of Putative Genes for Oleosin and the Biosynthesis of Flavonoids
    Li, Haiyan
    Dong, Yuanyuan
    Yang, Jing
    Liu, Xiuming
    Wang, Yanfang
    Yao, Na
    Guan, Lili
    Wang, Nan
    Wu, Jinyu
    Li, Xiaokun
    PLOS ONE, 2012, 7 (02):
  • [46] De novo transcriptome assembly of Angelica dahurica and characterization of coumarin biosynthesis pathway genes
    Zhao, Liqiang
    Zhang, Shengxiang
    Shan, Chunmiao
    Shi, Yuanyuan
    Wu, Huan
    Wu, Jiawen
    Peng, Daiyin
    GENE, 2021, 791
  • [47] De novo transcriptome assembly and analysis of genes involved in desiccation tolerance in Grimmia pilifera
    Liu, Yue
    Ge, Bingkun
    Zhang, Daqing
    Yi, Yanjun
    GENE, 2022, 847
  • [48] De novo sequencing and analysis of the termite mushroom (Termitomyces albuminosus) transcriptome to discover putative genes involved in bioactive component biosynthesis
    Yang, Fang
    Xu, Bo
    Zhao, Sanjun
    Li, Junjun
    Yang, Yunjuan
    Tang, Xianghua
    Wang, Feng
    Peng, Mozhen
    Huang, Zunxi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2012, 114 (02) : 228 - 231
  • [49] Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing
    Haiyang Feng
    Liang Xu
    Yan Wang
    Mingjia Tang
    Xianwen Zhu
    Wei Zhang
    Xiaochuan Sun
    Shanshan Nie
    Everlyne M’mbone Muleke
    Liwang Liu
    Molecular Genetics and Genomics, 2017, 292 : 1151 - 1163
  • [50] Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing
    Feng, Haiyang
    Xu, Liang
    Wang, Yan
    Tang, Mingjia
    Zhu, Xianwen
    Zhang, Wei
    Sun, Xiaochuan
    Nie, Shanshan
    Muleke, Everlyne M'mbone
    Liu, Liwang
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (05) : 1151 - 1163