Pro-p completions of groups of cohomological dimension 2

被引:0
|
作者
Kochloukova, Dessislava H. [1 ]
机构
[1] State Univ Campinas UNICAMP, Dept Math, BR-13083859 Campinas, SP, Brazil
关键词
Pro-p completion; cohomological dimension; limit group; POINCARE-DUALITY GROUPS; DIOPHANTINE GEOMETRY; ELEMENTARY THEORY; GROUPS I; PROFINITE;
D O I
10.1142/S0218196716500235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study when an abstract finitely presented group G of cohomological dimension cd(G) = 2 has pro-p completion (G) over cap (p) of cohomological dimension cd((G) over cap (p)) <= 2. Furthermore, we prove that for a tree hyperbolic limit group G we have cd((G) over cap (p)) <= 2 and show an example of a hyperbolic limit group G that is not free and (G) over cap (p) is free pro-p. For a finitely generated residually free group G that is not a limit group, we show that (G) over cap (p) is not free pro-p.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 50 条
  • [41] Omega subgroups of pro-p groups
    Gustavo A. Fernández-Alcober
    Jon González-Sánchez
    Andrei Jaikin-Zapirain
    Israel Journal of Mathematics, 2008, 166
  • [42] Character degrees of p-groups and pro-p groups
    Golsefidy, AS
    JOURNAL OF ALGEBRA, 2005, 286 (02) : 476 - 491
  • [43] On self-similarity of p-adic analytic pro-p groups of small dimension
    Noseda, Francesco
    Snopce, Ilir
    JOURNAL OF ALGEBRA, 2019, 540 : 317 - 345
  • [44] Pro-p link groups and p-homology groups
    Hillman, Jonathan
    Matei, Daniel
    Morishita, Masanori
    PRIMES AND KNOTS, 2006, 416 : 121 - 136
  • [45] p-Johnson homomorphisms and pro-p groups
    Morishita, Masanori
    Terashima, Yuji
    JOURNAL OF ALGEBRA, 2017, 479 : 102 - 136
  • [46] p-extensions of free pro-p groups
    Herfort, WN
    Ribes, L
    Zalesskii, PA
    FORUM MATHEMATICUM, 1999, 11 (01) : 49 - 61
  • [47] Locally pro-p contraction groups are nilpotent
    Gloeckner, Helge
    Willis, George A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 85 - 103
  • [48] On small waist pairs in pro-p groups
    Gavioli, Norberto
    Legarreta, Leire
    Ruscitti, Marco
    Scoppola, Carlo Maria
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 263 - 272
  • [49] Homological finiteness conditions for pro-p groups
    King, JD
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4969 - 4991
  • [50] ON PRO-p LINK GROUPS OF NUMBER FIELDS
    Mizusawa, Yasushi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7225 - 7254