Comparison of Intensity Based Deformable Registration Methods for Respiratory Motion Modelling from 4D MRI

被引:0
|
作者
Golkar, Ehsan [1 ]
Abd Rahni, Ashrani Aizzuddin [1 ]
Sulaiman, Riza [2 ]
机构
[1] Univ Kebangsaan Malaysia, Elect Elect & Syst Engn, Fac Engn & Built Environm, Bangi, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Inst Visual Informat, Bangi, Selangor, Malaysia
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deformable image registration is a key part of modern medical image processing and analysis. The aim of image registration is to align one image to another image. In this paper, three deformable image registration methods (NiftyReg, MRF-based and lreg) are compared based on their estimated motion field from 4D MRI data for respiratory motion modelling. The result shows that all of these methods are able to extract respiratory motion with different degrees of certainty. In terms of overall displacement for each organ, lreg with piecewise affine transformation produces more realistic motion than NiftyReg and MRF-Based registration. Finally, we can conclude that deformable image registration can be used to extract respiratory motion for applications such as integration into external beam radiotherapy treatment planning and delivery.
引用
收藏
页码:439 / 442
页数:4
相关论文
共 50 条
  • [31] 4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling
    Yang, Deshan
    Lu, Wei
    Low, Daniel A.
    Deasy, Joseph O.
    Hope, Andrew J.
    El Naqa, Issam
    MEDICAL PHYSICS, 2008, 35 (10) : 4577 - 4590
  • [32] Sketch-based Registration of 3D Cine MRI to 4D flow MRI
    Sabokrohiyeh, Samin
    Ang, Kathleen
    Elbaz, Mohammed
    Samavati, Faramarz
    ICBBT 2019: 2019 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL TECHNOLOGY, 2019, : 14 - 21
  • [33] Deformable registration of 4D CT in lung sterecitactic radiotherapy planning
    Vik, T.
    Kaus, M.
    Franks, K.
    Bissonnette, J-P.
    Purdie, T.
    Bezjak, A.
    Jaffray, D.
    RADIOTHERAPY AND ONCOLOGY, 2006, 81 : S98 - S99
  • [34] Interactive deformable registration visualization and analysis of 4D computed tomography
    Erem, Burak
    Sharp, Gregory C.
    Wu, Ziji
    Kaeli, David
    MEDICAL BIOMETRICS, PROCEEDINGS, 2007, 4901 : 232 - +
  • [35] Estimation of lung motion fields in 4D CT data by variational non-linear intensity-based registration: A comparison and evaluation study
    Werner, Rene
    Schmidt-Richberg, Alexander
    Handels, Heinz
    Ehrhardt, Jan
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (15): : 4247 - 4260
  • [36] Characterization of surface motion patterns in highly deformable soft tissue organs from dynamic MRI: An application to assess 4D bladder motion
    Makki, Karim
    Bohi, Amine
    Ogier, Augustin C.
    Bellemare, Marc Emmanuel
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 218
  • [37] Use of 4D-CT and Deformable Registration to Determine the Impact of Respiratory Motion on Lung Dose from Radiation Therapy
    Li, J.
    Chan, M. F.
    Hu, Y.
    Schupak, K.
    Burman, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 78 (03): : S708 - S708
  • [38] Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI
    Lantz, Jonas
    Gupta, Vikas
    Henriksson, Lilian
    Karlsson, Matts
    Persson, Anders
    Carlhall, Carl-Johan
    Ebbers, Tino
    RADIOLOGY, 2018, 289 (01) : 51 - 58
  • [39] Heart Protection in Proton Therapy Using 4D Motion Analysis Based On Registration Between SENSE MRI and 4DCT
    Chen, T.
    Zou, W.
    Zhang, M.
    Yue, N.
    Haffty, B.
    Khan, A.
    Goyal, S.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [40] 4D treatment planning using motion information from 4D-MRI
    Boye, D.
    Lomax, T.
    Knopf, A.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2012, 188 (08) : 732 - 732