Modular Engineering of Saccharomyces cerevisiae for De Novo Biosynthesis of Genistein

被引:10
|
作者
Meng, Yonghui [1 ,2 ,3 ]
Liu, Xue [1 ,2 ,3 ]
Zhang, Lijuan [1 ,2 ,3 ]
Zhao, Guang-Rong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Frontiers Sci Ctr Synthet Biol, Yaguan Rd 135, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Syst Bioengn, Minist Educ, Yaguan Rd 135, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Georgia Tech Shenzhen Inst, Dashi Rd 1, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
genistein; modular engineering; Saccharomyces cerevisiae; metabolic engineering; synthetic biology; ACID;
D O I
10.3390/microorganisms10071402
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Genistein, a nutraceutical isoflavone, has various pharmaceutical and biological activities which benefit human health via soy-containing food intake. This study aimed to construct Saccharomyces cerevisiae to produce genistein from sugar via a modular engineering strategy. In the midstream module, various sources of chalcone synthases and chalcone isomerase-like proteins were tested which enhanced the naringenin production from p-coumaric acid by decreasing the formation of the byproduct. The upstream module was reshaped to enhance the metabolic flux to p-coumaric acid from glucose by overexpressing the genes in the tyrosine biosynthetic pathway and deleting the competing genes. The downstream module was rebuilt to produce genistein from naringenin by pairing various isoflavone synthases and cytochrome P450 reductases. The optimal pair was used for the de novo biosynthesis of genistein with a titer of 31.02 mg/L from sucrose at 25 degrees C. This is the first report on the de novo biosynthesis of genistein in engineered S. cerevisiae to date. This work shows promising potential for producing flavonoids and isoflavonoids by modular metabolic engineering.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae
    Manuela Gottardi
    Jan Dines Knudsen
    Lydie Prado
    Mislav Oreb
    Paola Branduardi
    Eckhard Boles
    Applied Microbiology and Biotechnology, 2017, 101 : 4883 - 4893
  • [32] De Novo Biosynthesis of Caffeic Acid from Glucose by Engineered Saccharomyces cerevisiae
    Li, Yuanzi
    Mao, Jiwei
    Liu, Quanli
    Song, Xiaofei
    Wu, Yuzhen
    Cai, Miao
    Xu, Haijin
    Qiao, Mingqiang
    ACS SYNTHETIC BIOLOGY, 2020, 9 (04): : 756 - 765
  • [33] De novo biosynthesis of diverse plant-derived styrylpyrones in Saccharomyces cerevisiae
    Wu, Yinan
    Chen, Maple N.
    Li, Sijin
    METABOLIC ENGINEERING COMMUNICATIONS, 2022, 14
  • [34] De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae
    Gottardi, Manuela
    Knudsen, Jan Dines
    Prado, Lydie
    Oreb, Mislav
    Branduardi, Paola
    Boles, Eckhard
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (12) : 4883 - 4893
  • [35] Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae
    Lijin Duan
    Wentao Ding
    Xiaonan Liu
    Xiaozhi Cheng
    Jing Cai
    Erbing Hua
    Huifeng Jiang
    Microbial Cell Factories, 16
  • [36] Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae
    Duan, Lijin
    Ding, Wentao
    Liu, Xiaonan
    Cheng, Xiaozhi
    Cai, Jing
    Hua, Erbing
    Jiang, Huifeng
    MICROBIAL CELL FACTORIES, 2017, 16
  • [37] Engineering the C3N Pathway as a Short Detour for De Novo NAD+ Biosynthesis in Saccharomyces cerevisiae
    Li, Xinli
    Tang, Yue
    Ding, Yong
    Li, Pengwei
    Chen, Yihua
    FERMENTATION-BASEL, 2023, 9 (10):
  • [38] Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives
    Milne, Nicholas
    Saez-Saez, Javier
    Nielsen, Annette Munch
    Dyekjaer, Jane Dannow
    Rago, Daniela
    Kristensen, Mette
    Wulff, Tune
    Borodina, Irina
    CHEMISTRYOPEN, 2023, 12 (04):
  • [39] Heterologous biosynthesis of resveratrol, genistein and kaempferol from Saccharomyces cerevisiae
    Trantas, E.
    Panopoulos, N.
    Ververidis, F.
    PLANTA MEDICA, 2008, 74 (09) : 1163 - 1163
  • [40] Optimizing hexanoic acid biosynthesis in Saccharomyces cerevisiae for the de novo production of olivetolic acid
    Schäfer, Kilan J.
    Aras, Marco
    Boles, Eckhard
    Kayser, Oliver
    Biotechnology for Biofuels and Bioproducts, 2024, 17 (01):