Topological Study on Triazine-Based Covalent-Organic Frameworks

被引:11
|
作者
Augustine, Tony [1 ]
Roy, Santiago [1 ]
机构
[1] Vellore Inst Technol, Dept Math, Vellore 632014, Tamil Nadu, India
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 08期
关键词
triazine-based covalent-organic frameworks; degree-based topological indices; entropy measures; graph-theoretical approach; INDEXES; ENTROPY; GRAPHS;
D O I
10.3390/sym14081590
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most of the research has evidenced that there is a strong natural correlation among the chemical properties of molecular structures. This study analyses supramolecular chemistry and investigates topological indices of supramolecular structures called triazine-based covalent-organic frameworks. The use of degree-based topological indices on these chemical molecular structures can aid material scientists in better understanding their chemical and biological properties, thus compensating for the lack of chemical tests. This study aims to theoretically examine the triazine-based covalent-organic frameworks (TriCF) utilizing degree-based topological indices, specifically multiplicative topological indices and entropy measures. A detailed comparison of the computed topological indices of the aforementioned chemical structures is described using graphical depiction.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Improved and stable triazine-based covalent organic framework for lithium storage
    Cai, Yu-Qing
    Gong, Zhi-Ting
    Rong, Qian
    Liu, Jia-Ming
    Yao, Li-Feng
    Cheng, Fei-Xiang
    Liu, Jian-Jun
    Xia, Shu-Biao
    Guo, Hong
    APPLIED SURFACE SCIENCE, 2022, 594
  • [32] Photocatalytic degradation of organic dyes using covalent triazine-based framework
    Zhuang, Yan
    Zhu, Qian
    Li, Guozhen
    Wang, Zhanliang
    Zhan, Peng
    Ren, Cong
    Si, Zhihao
    Li, Shufeng
    Cai, Di
    Qin, Peiyong
    MATERIALS RESEARCH BULLETIN, 2022, 146
  • [33] Improved and stable triazine-based covalent organic framework for lithium storage
    Cai, Yu-Qing
    Gong, Zhi-Ting
    Rong, Qian
    Liu, Jia-Ming
    Yao, Li-Feng
    Cheng, Fei-Xiang
    Liu, Jian-Jun
    Xia, Shu-Biao
    Guo, Hong
    APPLIED SURFACE SCIENCE, 2022, 594
  • [34] Metal/covalent-organic frameworks-based electrocatalysts for water splitting
    Yan, Ya
    He, Ting
    Zhao, Bin
    Qi, Kai
    Liu, Hongfang
    Xia, Bao Yu
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (33) : 15905 - 15926
  • [35] Covalent triazine-based frameworks as electrodes for high-performance membrane capacitive deionization
    Liu, Daohua
    Ning, Xun-an
    Hong, Yanxiang
    Li, Yang
    Bian, Qiushi
    Zhang, Jianpei
    ELECTROCHIMICA ACTA, 2019, 296 : 327 - 334
  • [36] Synthesis of covalent triazine-based frameworks with high CO2 adsorption and selectivity
    Gu, Chunyang
    Liu, Deyu
    Huang, Wei
    Liu, Jie
    Yang, Renqiang
    POLYMER CHEMISTRY, 2015, 6 (42) : 7410 - 7417
  • [37] Covalent triazine-based frameworks for NH3 gas sensing at room temperature
    Niu, Fang
    Shao, Zhen-Wu
    Tao, Li-Ming
    Ding, Yong
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 321
  • [38] Transition metal decorated covalent triazine-based frameworks as a capacity hydrogen storage medium
    He, Hongsheng
    Chen, Xiaowei
    Zou, Weidong
    Li, Renquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (05) : 2823 - 2830
  • [39] Nitrogen-Rich Triazine-Based Covalent Organic Frameworks as Efficient Visible Light Photocatalysts for Hydrogen Peroxide Production
    Yang, Shu
    Zhi, Keke
    Zhang, Zhimin
    Kerem, Rukiya
    Hong, Qiong
    Zhao, Lei
    Wu, Wenbo
    Wang, Lulu
    Wang, Duozhi
    NANOMATERIALS, 2024, 14 (07)
  • [40] Two-Dimensional π-Conjugated Covalent-Organic Frameworks as Quantum Anomalous Hall Topological Insulators
    Dong, Liang
    Kim, Youngkuk
    Er, Dequan
    Rappe, Andrew M.
    Shenoy, Vivek B.
    PHYSICAL REVIEW LETTERS, 2016, 116 (09)