Universal Local Linear Kernel Estimators in Nonparametric Regression

被引:9
|
作者
Linke, Yuliana [1 ]
Borisov, Igor [1 ]
Ruzankin, Pavel [1 ]
Kutsenko, Vladimir [2 ,3 ]
Yarovaya, Elena [2 ,3 ]
Shalnova, Svetlana [3 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Lomonosov Moscow State Univ, Dept Probabil Theory, Moscow 119234, Russia
[3] Natl Med Res Ctr Therapy & Prevent Med, Dept Epidemiol Noncommunicable Dis, Moscow 101990, Russia
关键词
nonparametric regression; kernel estimator; local linear estimator; uniform consistency; fixed design; random design; dependent design elements; mean of dense functional data; epidemiological research; UNIFORM-CONVERGENCE RATES; FUNCTIONAL DATA; ASYMPTOTIC PROPERTIES; FIXED-DESIGN; CONSISTENCY; SPARSE;
D O I
10.3390/math10152693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New local linear estimators are proposed for a wide class of nonparametric regression models. The estimators are uniformly consistent regardless of satisfying traditional conditions of dependence of design elements. The estimators are the solutions of a specially weighted least-squares method. The design can be fixed or random and does not need to meet classical regularity or independence conditions. As an application, several estimators are constructed for the mean of dense functional data. The theoretical results of the study are illustrated by simulations. An example of processing real medical data from the epidemiological cross-sectional study ESSE-RF is included. We compare the new estimators with the estimators best known for such studies.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] ON ITERATED LOGARITHM LAWS FOR LINEAR ARRAYS AND NONPARAMETRIC REGRESSION-ESTIMATORS
    HALL, P
    ANNALS OF PROBABILITY, 1991, 19 (02): : 740 - 757
  • [22] Universal Consistency of Local Polynomial Kernel Regression Estimates
    Michael Kohler
    Annals of the Institute of Statistical Mathematics, 2002, 54 : 879 - 899
  • [23] SPLINE AND KERNEL MIXED ESTIMATORS IN MULTIVARIABLE NONPARAMETRIC REGRESSION FOR DENGUE HEMORRHAGIC FEVER MODEL
    Sifriyani
    Dani, Andrea Tri Rian
    Fauziyah, Meirinda
    Hayati, Memi Nor
    Wahyuningsih, Sri
    Prangga, Surya
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [24] Twicing local linear kernel regression smoothers
    Zhang, Wenzhuan
    Xia, Yingcun
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 399 - 417
  • [25] Optimal kernel shapes for local linear regression
    Ormoneit, D
    Hastie, T
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 540 - 546
  • [26] Universal weighted kernel-type estimators for some class of regression models
    Igor S. Borisov
    Yuliana Yu. Linke
    Pavel S. Ruzankin
    Metrika, 2021, 84 : 141 - 166
  • [27] Universal weighted kernel-type estimators for some class of regression models
    Borisov, Igor S.
    Linke, Yuliana Yu.
    Ruzankin, Pavel S.
    METRIKA, 2021, 84 (02) : 141 - 166
  • [28] Weighted local linear approach to censored nonparametric regression
    Cai, ZW
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 217 - 231
  • [29] Nonparametric comparison of regression curves by local linear fitting
    Gorgens, T
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (01) : 81 - 89
  • [30] Cross-validated local linear nonparametric regression
    Li, Q
    Racine, J
    STATISTICA SINICA, 2004, 14 (02) : 485 - 512