Universal Local Linear Kernel Estimators in Nonparametric Regression

被引:9
|
作者
Linke, Yuliana [1 ]
Borisov, Igor [1 ]
Ruzankin, Pavel [1 ]
Kutsenko, Vladimir [2 ,3 ]
Yarovaya, Elena [2 ,3 ]
Shalnova, Svetlana [3 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Lomonosov Moscow State Univ, Dept Probabil Theory, Moscow 119234, Russia
[3] Natl Med Res Ctr Therapy & Prevent Med, Dept Epidemiol Noncommunicable Dis, Moscow 101990, Russia
关键词
nonparametric regression; kernel estimator; local linear estimator; uniform consistency; fixed design; random design; dependent design elements; mean of dense functional data; epidemiological research; UNIFORM-CONVERGENCE RATES; FUNCTIONAL DATA; ASYMPTOTIC PROPERTIES; FIXED-DESIGN; CONSISTENCY; SPARSE;
D O I
10.3390/math10152693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New local linear estimators are proposed for a wide class of nonparametric regression models. The estimators are uniformly consistent regardless of satisfying traditional conditions of dependence of design elements. The estimators are the solutions of a specially weighted least-squares method. The design can be fixed or random and does not need to meet classical regularity or independence conditions. As an application, several estimators are constructed for the mean of dense functional data. The theoretical results of the study are illustrated by simulations. An example of processing real medical data from the epidemiological cross-sectional study ESSE-RF is included. We compare the new estimators with the estimators best known for such studies.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    [J]. MATHEMATICS, 2024, 12 (12)
  • [2] Weighted kernel estimators in nonparametric binomial regression
    Okumura, H
    Naito, K
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 39 - 62
  • [3] Local linear kernel estimation for discontinuous nonparametric regression functions
    Gao, JT
    Pettitt, AN
    Wolff, RCL
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (12) : 2871 - 2894
  • [4] On internally corrected and symmetrized kernel estimators for nonparametric regression
    Linton, Oliver B.
    Jacho-Chavez, David T.
    [J]. TEST, 2010, 19 (01) : 166 - 186
  • [5] On internally corrected and symmetrized kernel estimators for nonparametric regression
    Oliver B. Linton
    David T. Jacho-Chávez
    [J]. TEST, 2010, 19 : 166 - 186
  • [6] ULTRASPHERICAL POLYNOMIAL, KERNEL AND HYBRID ESTIMATORS FOR NONPARAMETRIC REGRESSION
    AZARI, AS
    MACK, YP
    MULLER, HG
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 80 - 96
  • [7] NONPARAMETRIC REGRESSION - KERNEL METHODS AND WEIGHTED LOCAL REGRESSION
    ELFAOUZI, NE
    SARDA, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (01): : 69 - 72
  • [8] Kernel regression estimators for nonparametric model calibration in survey sampling
    Cadigan N.G.
    Chen J.
    [J]. Journal of Statistical Theory and Practice, 2010, 4 (1) : 1 - 25
  • [9] Evaluation of matching noise for imputation techniques based on nonparametric local linear regression estimators
    Conti, Pier Luigi
    Marella, Daniela
    Scanu, Mauro
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 354 - 365
  • [10] On the asymptotic normality of kernel regression estimators of the mode in the nonparametric random design model
    Ziegler, K
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 115 (01) : 123 - 144