Dissipativity in mean square of stochastic reaction diffusion systems

被引:0
|
作者
Zhang, Yu-Tian [1 ]
Luo, Qi [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Informat & Control, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
stochastic reaction diffusion systems; Lyapunov function; Ito differential formula; dissipativity; in mean square;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is by means of Lyapunov method that stochastic ordinary differential equations and stochastic functional differential equations have been studied intensively. However, for stochastic reaction diffusion equations, this useful technique seems to find no way out on account of the empty of its own Ito's formula. To get over this difficulty, we will regard the integral of the considered trajectory with respect to spatial variables as the solution of the corresponding stochastic ordinary differential equations, via employing Ito's formula under integral operator instead of directly applying Ito's formula to Lyapunov functions in the case of stochastic ordinary differential equations, to aim at establishing the theory of dissipativity for Ito stochastic reaction diffusion systems. Some sufficient conditions for dissipativity and uniform dissipativity in mean square are given and this paper ends up with an example illustrating the obtained results.
引用
收藏
页码:2639 / +
页数:3
相关论文
共 50 条
  • [41] Mean Square Exponential Stability of Stochastic Stieltjes Integral Delay Systems
    Zhang, Qianqian
    Li, Zhao-Yan
    2023 2ND CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, CFASTA, 2023, : 18 - 23
  • [42] Mean Square Stability of Nonlinear Stochastic Impulsive Systems with Time Delay
    Alwan, Mohamad
    Liu, Xinzhi
    Xie, Wei-Chau
    ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY, 2011, 1368
  • [43] MEAN-SQUARE STABILIZABILITY OF A CLASS OF NONLINEAR STOCHASTIC-SYSTEMS
    YAZ, EG
    PROCEEDINGS OF THE 1989 AMERICAN CONTROL CONFERENCE, VOLS 1-3, 1989, : 2586 - 2589
  • [45] Mean square H∞ synchronization of coupled stochastic partial differential systems
    Wang, Liming
    Wu, Kai-Ning
    Zhu, Ya-Nan
    Ding, Xiaohua
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 386 - 393
  • [46] Mean square stabilisation of complex oscillatory regimes in nonlinear stochastic systems
    Bashkirtseva, Irina
    Ryashko, Lev
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (04) : 793 - 800
  • [47] Exponential Mean Square Stabilization for Ito Stochastic Systems with Input Delay
    Xu, Juanjuan
    Zhang, Huanshui
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1404 - 1409
  • [48] Mean Square Optimal Control by Interconnection for Linear Stochastic Hamiltonian Systems
    Vladimirov, Igor G.
    Petersen, Ian R.
    2020 AUSTRALIAN AND NEW ZEALAND CONTROL CONFERENCE (ANZCC 2020), 2020, : 24 - 29
  • [49] New stability criteria for stochastic perturbed singular systems in mean square
    Caraballo, Tomas
    Ezzine, Faten
    Hammami, Mohamed Ali
    NONLINEAR DYNAMICS, 2021, 105 (01) : 241 - 256
  • [50] Mean square stabilisability of stochastic linear systems with data rate constraints
    Nair, GN
    Evans, RJ
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1632 - 1637