Fundamental domains for congruence subgroups of SL2 in positive characteristic

被引:4
|
作者
Carbone, Lisa [2 ]
Cobbs, Leigh [2 ]
Murray, Scott H. [1 ]
机构
[1] Univ Canberra, Fac Informat Sci & Engn, Discipline Math & Stat, Canberra, ACT 2601, Australia
[2] Rutgers State Univ, Dept Math, Hill Ctr, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Groups acting on trees; Bruhat-Tits tree; Fundamental domain; Special linear group;
D O I
10.1016/j.jalgebra.2010.08.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we construct fundamental domains for congruence subgroups of SL2(F-q[t]) and PGL(2)(F-q[t]). Our method uses Gekeler's description of the fundamental domains on the Bruhat-Tits tree X = Xq+1 in terms of cosets of subgroups. We compute the fundamental domains for a number of congruence subgroups explicitly as graphs of groups using the computer algebra system Magma. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:431 / 439
页数:9
相关论文
共 50 条
  • [31] Orthogonal representations of SL2(q) in defining characteristic
    Braun, Tobias
    Nebe, Gabriele
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024,
  • [32] Linear characters of SL2 over Dedekind domains
    Boylan, Hatice
    Skoruppa, Nils-Peter
    [J]. JOURNAL OF ALGEBRA, 2013, 373 : 120 - 129
  • [33] On modular forms for some noncongruence subgroups of SL2(Z)
    Kurth, Chris A.
    Long, Ling
    [J]. JOURNAL OF NUMBER THEORY, 2008, 128 (07) : 1989 - 2009
  • [34] Haagerup Property for subgroups of SL2 and residually free groups
    de Cornulier, Yves
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (02) : 341 - 343
  • [35] ANOMALOUS NORMAL-SUBGROUPS OF SL2(K[X])
    MASON, AW
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (143): : 345 - 358
  • [36] Superstable subgroups of SL2(K) and of PSL2(K).
    Mustafin, Y
    Poizat, B
    [J]. JOURNAL OF ALGEBRA, 2006, 297 (01) : 155 - 167
  • [37] AUTOMORPHISM GROUPS AND SUBGROUPS OF SL2 OVER DIVISION RINGS
    BACHMUTH, S
    MOCHIZUKI, HY
    [J]. COMMUNICATIONS IN ALGEBRA, 1979, 7 (14) : 1531 - 1558
  • [38] Solving the membership problem for certain subgroups of SL2(Z)
    Han, Sandie
    Masuda, Ariane M.
    Singh, Satyanand
    Thiel, Johann
    [J]. JOURNAL OF ALGEBRA, 2024, 653 : 281 - 297
  • [39] On the concept of level for subgroups of SL2 over arithmetic rings
    Fritz Grunewald
    Joachim Schwermer
    [J]. Israel Journal of Mathematics, 1999, 114 : 205 - 220
  • [40] On the concept of level for subgroups of SL2 over arithmetic rings
    Grunewald, F
    Schwermer, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1999, 114 (1) : 205 - 220